izpis_h1_title_alt

Creation of numerical constants in robust gene expression programming
ID Fajfar, Iztok (Avtor), ID Tuma, Tadej (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (315,48 KB)
MD5: CBAB3E87EBEFF8DAAB603CF739907926
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1099-4300/20/10/756 Povezava se odpre v novem oknu

Izvleček
The problem of the creation of numerical constants has haunted the Genetic Programming (GP) community for a long time and is still considered one of the principal open research issues. Many problems tackled by GP include finding mathematical formulas, which often contain numerical constants. It is, however, a great challenge for GP to create highly accurate constants as their values are normally continuous, while GP is intrinsically suited for combinatorial optimization. The prevailing attempts to resolve this issue either employ separate real-valued local optimizers or special numeric mutations. While the former yield better accuracy than the latter, they add to implementation complexity and significantly increase computational cost. In this paper, we propose a special numeric crossover operator for use with Robust Gene Expression Programming (RGEP). RGEP is a type of genotype/phenotype evolutionary algorithm closely related to GP, but employing linear chromosomes. Using normalized least squares error as a fitness measure, we show that the proposed operator is significantly better in finding highly accurate solutions than the existing numeric mutation operators on several symbolic regression problems. Another two important advantages of the proposed operator are that it is extremely simple to implement, and it comes at no additional computational cost. The latter is true because the operator is integrated into an existing crossover operator and does not call for an additional cost function evaluation.

Jezik:Angleški jezik
Ključne besede:genetic programming, gene expression programming, genetic algorithms, genotype/phenotype evolutionary algorithms, symbolic regression, constant creation, ephemeral random constants, numeric mutation, numeric crossover, digit-wise crossover
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2018
Št. strani:15 str.
Številčenje:Vol. 20, iss. 10, art. 756
PID:20.500.12556/RUL-132103 Povezava se odpre v novem oknu
UDK:004
ISSN pri članku:1099-4300
DOI:10.3390/e20100756 Povezava se odpre v novem oknu
COBISS.SI-ID:12233812 Povezava se odpre v novem oknu
Datum objave v RUL:13.10.2021
Število ogledov:931
Število prenosov:167
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Entropy
Skrajšan naslov:Entropy
Založnik:MDPI
ISSN:1099-4300
COBISS.SI-ID:515806233 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.10.2018

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:genetsko programiranje, programiranje z izraženimi geni, genetski algoritmi, evolucijski algoritmi s preslikavo iz genotipa v fenotip, simbolična regresija, generiranje konstant, prehodne naključne konstante, numerična mutacija, numerično križanje, križanje na nivoju števk

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0246
Naslov:Algoritmi in optimizacijski postopki v telekomunikacijah

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj