izpis_h1_title_alt

Včrtane stožnice : magistrsko delo
ID Strgar, Žana (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,51 MB)
MD5: 999DAA5B7C8D67A8E85F282EBBAED8F0

Abstract
V delu obravnavamo stožnice in njihove geometrijske lastnosti. Posebno pozornost namenimo včrtanim stožnicam, to so stožnice, ki se dotikajo nosilk stranic večkotnika. S pomočjo rezultatov evklidske, kot sta izotomična in izogonalna konjugacija, ter projektivne geometrije, kot je polarna zveza, poskušamo raziskati njihove lastnosti ter poiskati točke, ki nam bodo v pomoč pri njihovi konstrukciji. Ogledamo si stožnico včrtano v trikotnik, Steinerjevo in Brocardovo elipso ter parabolo včrtano trikotniku in popolnemu štirikotniku. Omenjene stožnice želimo konstruirati s pomočjo programa GeoGebra. V ta namen želimo poiskati pet točk stožnice, saj je s petimi točkami stožnica natanko določena, ali značilne točke, ki določajo stožnico, na primer gorišča in točko na stožnici.

Language:Slovenian
Keywords:včrtane stožnice, stožnice, projektivna geometrija, preseki stožca, Steinerjeva elipsa, perspektor, izogonalna konjugacija, izotomična konjugacija, polarna zveza
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-132032 This link opens in a new window
UDC:514
COBISS.SI-ID:80572675 This link opens in a new window
Publication date in RUL:09.10.2021
Views:1332
Downloads:282
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Inscribed conics
Abstract:
In this work we study the geometry of conic sections and their geometric properties. We are particularly interested in the inscribed conics, i. e., the conics that are tangent to the sides of the polygon. We study their properties using results of Euclidean, such as isotomic and isogonal conjugation, and projective geometry, such as the polar correspondence. We deal with conics inscribed in a triangle, Steiner and Brocard ellipse, and a parabola inscribed in a triangle and a complete quadrilateral. To construct these conics with GeoGebra program, we need to find five points of the conic, since five points determine a conic, or some characteristic points, for example, foci.

Keywords:inscribed conics, conics, projective geometry, conic sections, Steiner ellipse, perspector, isogonal conjugation, isotomic conjugation, polar correspondence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back