izpis_h1_title_alt

MFAM : Multiple Frequency Adaptive Model-based indoor localization method
ID Tuta, Jure (Avtor), ID Jurič, Matjaž B. (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (7,26 MB)
MD5: B0F33CD7A94806408BB93C7F2552D98B
URLURL - Izvorni URL, za dostop obiščite http://www.mdpi.com/1424-8220/18/4/963 Povezava se odpre v novem oknu

Izvleček
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

Jezik:Angleški jezik
Ključne besede:adaptive localization, indoor positioning, model-based localization, multi-frequency localization, biomedical signal processing, propagation modeling, IEEE 802.11ah
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2018
Št. strani:18 str.
Številčenje:Vol. 18, iss. 4, art. 963
PID:20.500.12556/RUL-131850 Povezava se odpre v novem oknu
UDK:621.397:004.7
ISSN pri članku:1424-8220
DOI:10.3390/s18040963 Povezava se odpre v novem oknu
COBISS.SI-ID:1537764803 Povezava se odpre v novem oknu
Datum objave v RUL:04.10.2021
Število ogledov:1048
Število prenosov:164
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.04.2018

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:adaptivna lokalizacija, lokacija v stavbah, lokalizacija na podlagi modelov, večfrekvenčna lokalizacija, modeliranje propagacije, IEEE 802.11ah

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj