izpis_h1_title_alt

Crack propagation simulation without crack tracking algorithm - embedded discontinuity formulation with incompatible modes
ID Stanić, Andjelka (Avtor), ID Brank, Boštjan (Avtor), ID Ibrahimbegović, Adnan (Avtor), ID Matthies, Hermann G. (Avtor)

URLURL - Izvorni URL, za dostop obiščite https://doi.org/10.1016/j.cma.2021.114090 Povezava se odpre v novem oknu

Izvleček
We show that for the simulation of crack propagation in quasi-brittle, two-dimensional solids, very good results can be obtained with an embedded strong discontinuity quadrilateral finite element that has incompatible modes. Even more importantly, we demonstrate that these results can be obtained without using a crack tracking algorithm. Therefore, the simulation of crack patterns with several cracks, including branching, becomes possible. The avoidance of a tracking algorithm is mainly enabled by the application of a novel, local (Gauss-point based) criterion for crack nucleation, which determines the time of embedding the localisation line as well as its position and orientation. We treat the crack evolution in terms of a thermodynamical framework, with softening variables describing internal dissipative mechanisms of material degradation. As presented by numerical examples, many elements in the mesh may develop a crack, but only some of them actually open and/or slide, dissipate fracture energy, and eventually form the crack pattern. The novel approach has been implemented for statics and dynamics, and the results of computed difficult examples (including Kalthoff%s test) illustrate its very satisfying performance. It effectively overcomes unfavourable restrictions of the standard embedded strong discontinuity formulations, namely the simulation of the propagation of a single crack only. Moreover, it is computationally fast and straightforward to implement. Our numerical solutions match the results of experimental tests and previously reported numerical results in terms of crack pattern, dissipated fracture energy, and load%displacement curve.

Jezik:Angleški jezik
Ključne besede:Fracture modelling, Quadrilateral finite element, Embedded strong discontinuity, Incompatible mode method, Rigid-damage softening, Dynamic fracture
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Poslano v recenzijo:16.12.2020
Datum sprejetja članka:30.07.2021
Leto izida:2021
Št. strani:Str. 1-39
Številčenje:Letn. 386, št. 114090
PID:20.500.12556/RUL-131840 Povezava se odpre v novem oknu
UDK:624.074.4
ISSN pri članku:0045-7825
DOI:10.1016/j.cma.2021.114090 Povezava se odpre v novem oknu
COBISS.SI-ID:73902083 Povezava se odpre v novem oknu
Datum objave v RUL:04.10.2021
Število ogledov:1023
Število prenosov:58
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computer methods in applied mechanics and engineering
Skrajšan naslov:Comput. methods appl. mech. eng.
Založnik:Elsevier
ISSN:0045-7825
COBISS.SI-ID:6695685 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:30.07.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:modeliranje loma materiala, četverokotni končni element, vstavljena močna nezveznost, nekompatibilni pomiki, mehčanje, dinamična odpoved materiala

Projekti

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:MA 2236/28-1

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-1722
Naslov:Numerično modeliranje širjenja razpok v krhkih in duktilnih konstrukcijah

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj