izpis_h1_title_alt

Using market exploration to deal with censored data in real-time bidding
ID Hartman, Jan (Author), ID Demšar, Jure (Mentor) More about this mentor... This link opens in a new window, ID Štrumbelj, Erik (Comentor)

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: 7130DFEE0E9AFCFFC19B949129D25D1A

Abstract
Real-time bidding is a fast-growing part of online advertising in which ad space on websites is sold in real-time while the page is still loading. The ad space is sold in auctions where several bidders compete. One of the central problems in RTB is click-through rate prediction, which has to deal with censored data -- since the bidders do not receive data about the auctions they lose, the predictive models cannot learn from them. To tackle this problem, we propose two strategies that explore by buying more ad impressions on unknown parts of the market. The proposed strategies use either hand-crafted insights or model uncertainty to guide the exploration. To test the strategies in the real world, we conducted A/B tests on the production traffic of Zemanta, a DSP in the RTB ecosystem. We also compared the obtained models' performances offline. Our results show that exploring the market through publishers did not bring significant improvements to the business or the model metrics. On the other hand, exploring with the uncertainty of the predictions showed increases in revenue and CTR as well as improvements in model performance metrics, indicating that using the uncertainty of the CTR model for exploration can be beneficial.

Language:English
Keywords:censored data, click-through rate prediction, real-time bidding, incremental learning, big data, demand-side platform
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-131620 This link opens in a new window
COBISS.SI-ID:79729411 This link opens in a new window
Publication date in RUL:30.09.2021
Views:1837
Downloads:519
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Uporaba raziskovanja trga za reševanje problema cenzuriranih podatkov v realnočasovnih avkcijah
Abstract:
Realnočasovne avkcije (RTB) so hitro rastoči del spletnega oglaševanja, v katerem se oglasni prostor na spletnih mestih prodaja v realnem času, medtem ko se stran še nalaga. Oglasni prostor se prodaja na dražbah, na katerih tekmuje več dražiteljev. Ena osrednjih težav v RTB-ju je napovedovanje klikov, ki ga ovira cenzuriranost podatkov -- ker dražitelji ne prejmejo podatkov o izgubljenih dražbah, se napovedni modeli iz njih ne morejo učiti. Za reševanje tega problema predlagamo dve strategiji, ki raziskujeta z nakupovanjem več prikazov oglasov na neznanih delih trga. Predlagani strategiji za vodenje raziskovanja uporabljata bodisi ročno izdelane vpoglede bodisi negotovost modelov. Za preizkušanje strategij v resničnem svetu smo izvedli A/B teste na produkcijskem prometu podjetja Zemanta, ki je DSP v ekosistemu RTB. Primerjali smo tudi uspešnosti pridobljenih modelov. Naši rezultati kažejo, da raziskovanje trga preko spletnih založnikov ni prineslo bistvenih izboljšav v poslu ali metrikah uspešnosti modelov. Po drugi strani je raziskovanje z negotovostjo napovedi pokazalo povečanje prihodkov in CTR-ja ter izboljšanje metrik uspešnosti modelov, kar kaže, da je lahko uporaba negotovosti napovednega modela za raziskovanje koristna.

Keywords:cenzurirani podatki, napovedovanje klikov, realnočasovne avkcije, inkrementalno učenje, velepodatki, platforma za povpraševanje

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back