Realnočasovne avkcije (RTB) so hitro rastoči del spletnega oglaševanja, v katerem se oglasni prostor na spletnih mestih prodaja v realnem času, medtem ko se stran še nalaga. Oglasni prostor se prodaja na dražbah, na katerih tekmuje več dražiteljev. Ena osrednjih težav v RTB-ju je napovedovanje klikov, ki ga ovira cenzuriranost podatkov -- ker dražitelji ne prejmejo podatkov o izgubljenih dražbah, se napovedni modeli iz njih ne morejo učiti.
Za reševanje tega problema predlagamo dve strategiji, ki raziskujeta z nakupovanjem več prikazov oglasov na neznanih delih trga. Predlagani strategiji za vodenje raziskovanja uporabljata bodisi ročno izdelane vpoglede bodisi negotovost modelov. Za preizkušanje strategij v resničnem svetu smo izvedli A/B teste na produkcijskem prometu podjetja Zemanta, ki je DSP v ekosistemu RTB. Primerjali smo tudi uspešnosti pridobljenih modelov.
Naši rezultati kažejo, da raziskovanje trga preko spletnih založnikov ni prineslo bistvenih izboljšav v poslu ali metrikah uspešnosti modelov. Po drugi strani je raziskovanje z negotovostjo napovedi pokazalo povečanje prihodkov in CTR-ja ter izboljšanje metrik uspešnosti modelov, kar kaže, da je lahko uporaba negotovosti napovednega modela za raziskovanje koristna.
|