izpis_h1_title_alt

Dinamična odvisnost neklasičnih efektov kvantne prepletenosti
ID Gradišar, Žiga (Author), ID Horvat, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,01 MB)
MD5: 5566D5101B56601DA165A1D48BCF14EE

Abstract
Kvantno prepletenost in njen klasičnim analog, to je t.i. klasična separabilnost, bomo obravnavali v dinamičnemu sistemu dveh sklopljenih perturbiranih mačjih preslikav. Dinamiko klasičnega sistema opazujemo s pomočjo časovnega razvoja verjetnostne gostote na klasičnem faznem prostoru. Za študij kvantno-klasične korespondence je omenjeni klasični sistem ustrezno kvantiziran in kvantna dinamika je preko Wignerjevih funkcij predstavljena v obliki časovnega razvoja kvaziverjetnostnih gostot na klasičnem faznem prostoru. Za doseganje optimalne korespondence med kvantno in klasično različico bo začetno stanje na faznem prostoru enako Wignerjevi funkciji koherentnega stanja. Za funkcije na faznem prostoru, specifično za klasično verjetnostno gostoto in Wignerjevo funkcijo kvantnega sistema, uvedemo entropijo separabilnosti, ki je v primeru Wignerjeve funkcije enostavno povezana z entropijo kvantne prepletenosti. Kot rezultate bomo predstavili podobnosti in razlike med časovnim razvojem entropije separabilnost klasičnega in kvantnega sistema pri različnih dinamičnih parametrih.

Language:Slovenian
Keywords:prepletenost, separabilnost, Wignerjeva funkcija, torus, kvantizacija, entropija, kvantna mehanika, mačja preslikava, lokalizacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-130432 This link opens in a new window
COBISS.SI-ID:76356867 This link opens in a new window
Publication date in RUL:15.09.2021
Views:864
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Non-classical Effects of Quantum Entanglement and Their Dependence on Dynamics
Abstract:
Quantum entanglement and its classical analogue - classical separability - will be treated in a dynamical system consisting of two coupled perturbed cat maps. The dynamics of the classical system will be observed through time evolution of the probability density on the classical phase space. To study the quantum-classical correspondence the classical dynamical system is quantized and the stemming quantum dynamics are presented as time-evolving quasi-probabilities on the classical phase space via Wigner functions. To reach optimal quantum-classical correspondence the initial state on phase space is equal to Wigner function of a coherent state. For phase space functions, specifically for classical probability density and Wigner function, we introduce separability entropy, which is in the case of a Wigner function related simply to quantum entanglement entropy. The results will be presented as the similarities and the differences between time-evolved separability entropies of a classical and quantum systems under variable dynamical parameters.

Keywords:entanglement, separability, Wigner function, torus, quantiza- tion, entropy, quantum mechanics, cat map, localization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back