We applied Wertheims's integral equation theory (IET) and first order thermodynamic perturbation theory (TPT) for associative liquids to rose model of water. The model is a simple two-dimensional water model similar to Mercedes-Benz water model. The advantage of rose model is its computational efficiency, while exhibiting majority of water's anomalous properties. In rose water model molecules are modeled as two-dimensional Lennard-Jones disks with added hydrogen-bonding potential, in which 3-petal rose functions are used. Besides computational efficiency rose water model is easily adjustable.
In this work integral equation theory and thermodynamic perturbation theory were used to study structural and thermodynamic properties of pure water model. Two different parametrisations of rose model were used, one that mimics MB model and other with more experimental water-like properties. The results calculated using IET and TPT were compared to results obtained from Monte Carlo (MC) simulations. Agreement between water-water radial distribution functions obtained using IET and MC is good at moderate and high temperature. Thermodynamic properties were calculated both at constant volume and at constant pressure. IET and TPT semi-quantitatively predict energy, enthalpy, heat capacity at constant volume and at constant pressure, pressure, density, thermal expansion coefficient and isothermal compressibility. Agreement between results from the theories and MC simulations is better at higher temperature and lower packing fraction of molecules. Using thermodynamic perturbation theory we calculated vapor-liquid equilibrium line and critical point of rose water model. We also studied solvation of nonpolar solute in water modeled with rose water model. Using IET we calculated solute-water and solute-solute radial distribution functions, which at moderate and high temperatures are in good agreement with distribution functions obtained from MC. Using thermodynamic perturbation theory energy and free energy of transfer for nonpolar solute in water were calculated, TPT qualitatively predicts temperature dependencies of these quantities.
|