Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Fast and accurate Monte Carlo simulations of subdiffusive spatially resolved reflectance for a realistic optical fiber probe tip model aided by a deep neural network
ID
Zelinskyi, Yevhen
(
Author
),
ID
Naglič, Peter
(
Author
),
ID
Pernuš, Franjo
(
Author
),
ID
Likar, Boštjan
(
Author
),
ID
Bürmen, Miran
(
Author
)
PDF - Presentation file,
Download
(3,68 MB)
MD5: B8EBE8278120F30C1DBC5732862463F6
URL - Source URL, Visit
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-11-7-3875&id=432821
Image galllery
Abstract
In this work, we introduce a framework for efficient and accurate Monte Carlo (MC) simulations of spatially resolved reflectance (SRR) acquired by optical fiber probes that account for all the details of the probe tip including reflectivity of the stainless steel and the properties of the epoxy fill and optical fibers. While using full details of the probe tip is essential for accurate MC simulations of SRR, the break-down of the radial symmetry in the detection scheme leads to about two orders of magnitude longer simulation times. The introduced framework mitigates this performance degradation, by an efficient reflectance regression model that maps SRR obtained by fast MC simulations based on a simplified probe tip model to SRR simulated using the full details of the probe tip. We show that a small number of SRR samples is sufficient to determine the parameters of the regression model. Finally, we use the regression model to simulate SRR for a stainless steel optical probe with six linearly placed fibers and experimentally validate the framework through the use of inverse models for estimation of absorption and reduced scattering coefficients and subdiffusive scattering phase function quantifiers.
Language:
English
Keywords:
light propagation model
,
Monte Carlo simulations
,
absorption
,
subdiffusive spatially resolved reflectance
,
optical fiber probe
,
deep neural networks
,
deep learning
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FE - Faculty of Electrical Engineering
Publication status:
Published
Publication version:
Version of Record
Year:
2020
Number of pages:
Str. 3875-3889
Numbering:
Vol. 11, no. 7, art. 391163
PID:
20.500.12556/RUL-128814
UDC:
535:004.8
ISSN on article:
2156-7085
DOI:
10.1364/BOE.391163
COBISS.SI-ID:
26951939
Copyright:
V članku navedeno: "© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement"; s povezavo
https://www.osapublishing.org/library/license_v1.cfm
. (3. 8. 2021)
Publication date in RUL:
03.08.2021
Views:
1005
Downloads:
181
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Biomedical optics express
Shortened title:
Biomed. opt. express
Publisher:
Optica
ISSN:
2156-7085
COBISS.SI-ID:
24857383
Secondary language
Language:
Slovenian
Keywords:
model širjenja svetlobe
,
simulacije Monte Carlo
,
subdifuzijska prostorsko razločena reflektanca
,
absorpcija
,
optična sonda
,
nevronske mreže
,
globoko učenje
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
J2-7211
Name:
Spremljanje zdravja ustne votline s hiperspektralnim slikanjem
Funder:
ARRS - Slovenian Research Agency
Project number:
J2-8173
Name:
Avtomatska analiza angiografskih slik za zgodnjo diagnostiko, spremljanje in zdravljenje intrakranialnih anevrizem
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0232
Name:
Funkcije in tehnologije kompleksnih sistemov
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back