izpis_h1_title_alt

Fast and accurate Monte Carlo simulations of subdiffusive spatially resolved reflectance for a realistic optical fiber probe tip model aided by a deep neural network
ID Zelinskyi, Yevhen (Author), ID Naglič, Peter (Author), ID Pernuš, Franjo (Author), ID Likar, Boštjan (Author), ID Bürmen, Miran (Author)

.pdfPDF - Presentation file, Download (3,68 MB)
MD5: B8EBE8278120F30C1DBC5732862463F6
URLURL - Source URL, Visit https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-11-7-3875&id=432821 This link opens in a new window

Abstract
In this work, we introduce a framework for efficient and accurate Monte Carlo (MC) simulations of spatially resolved reflectance (SRR) acquired by optical fiber probes that account for all the details of the probe tip including reflectivity of the stainless steel and the properties of the epoxy fill and optical fibers. While using full details of the probe tip is essential for accurate MC simulations of SRR, the break-down of the radial symmetry in the detection scheme leads to about two orders of magnitude longer simulation times. The introduced framework mitigates this performance degradation, by an efficient reflectance regression model that maps SRR obtained by fast MC simulations based on a simplified probe tip model to SRR simulated using the full details of the probe tip. We show that a small number of SRR samples is sufficient to determine the parameters of the regression model. Finally, we use the regression model to simulate SRR for a stainless steel optical probe with six linearly placed fibers and experimentally validate the framework through the use of inverse models for estimation of absorption and reduced scattering coefficients and subdiffusive scattering phase function quantifiers.

Language:English
Keywords:light propagation model, Monte Carlo simulations, absorption, subdiffusive spatially resolved reflectance, optical fiber probe, deep neural networks, deep learning
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FE - Faculty of Electrical Engineering
Publication status:Published
Publication version:Version of Record
Year:2020
Number of pages:Str. 3875-3889
Numbering:Vol. 11, no. 7, art. 391163
PID:20.500.12556/RUL-128814 This link opens in a new window
UDC:535:004.8
ISSN on article:2156-7085
DOI:10.1364/BOE.391163 This link opens in a new window
COBISS.SI-ID:26951939 This link opens in a new window
Copyright:
V članku navedeno: "© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement"; s povezavo https://www.osapublishing.org/library/license_v1.cfm. (3. 8. 2021)
Publication date in RUL:03.08.2021
Views:999
Downloads:181
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Biomedical optics express
Shortened title:Biomed. opt. express
Publisher:Optica
ISSN:2156-7085
COBISS.SI-ID:24857383 This link opens in a new window

Secondary language

Language:Slovenian
Keywords:model širjenja svetlobe, simulacije Monte Carlo, subdifuzijska prostorsko razločena reflektanca, absorpcija, optična sonda, nevronske mreže, globoko učenje

Projects

Funder:ARRS - Slovenian Research Agency
Project number:J2-7211
Name:Spremljanje zdravja ustne votline s hiperspektralnim slikanjem

Funder:ARRS - Slovenian Research Agency
Project number:J2-8173
Name:Avtomatska analiza angiografskih slik za zgodnjo diagnostiko, spremljanje in zdravljenje intrakranialnih anevrizem

Funder:ARRS - Slovenian Research Agency
Project number:P2-0232
Name:Funkcije in tehnologije kompleksnih sistemov

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back