In this diploma thesis, we tackled the task that all banks face. How to determine the amount of capital they must hold in reserve to prevent insolvency and provide insurance against possible unexpected losses. The amount of regulatory capital, as we call it, depends on the level of risk set by the banking market regulator. Our task was then to calculate the proportion of the portfolio value that we need to hold in reserve. This is an important task as underestimating regulatory capital increases the risk of insolvency or punishment by the regulator. On the other hand, overestimating
the capital leads to undesirable opportunity costs. In this diploma thesis, we used order statistics to estimate regulatory capital. We compared four different estimators analytically and using simulations. All estimators were supported by the theory of order statistics and based on the last 250 daily logarithmic returns of the portfolio. To estimate the regulatory capital corresponding to the 99% risk level, possible estimators are the second and third order statistics, their average, and the
second order statistic based on the reduced sample of the last 200 daily logarithmic returns. Using simulations, we concluded that the average between the second and third order statistics and the second order statistic on the reduced sample are unbiased estimators, and the latter has a larger standard deviation. Therefore, the best estimator is the average between the second and third order statistics. We also found that the performance of the estimators is independent of the logarithmic
returns distribution, which further supports the use of these estimators in practice.
|