izpis_h1_title_alt

Parkinson disease subtypes based on short time series and multi-view clustering
KRALJEVSKA, MELANIJA (Avtor), Robnik Šikonja, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu, Valmarska, Anita (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,57 MB)
MD5: 8667D3F67331CC634F2A17FC1B6AE984

Izvleček
Parkinson's disease (PD) is a progressive brain disorder which is characterized by movement problems such as tremor, stiffness, slowness of movement and dizziness, as well as non-motor symptoms, which include sleep disorders, constipation, problems concentrating, depression and emotional changes. Due to the clinical heterogeneity of PD, the existence of subtypes of PD patients has been addressed in many clinical and research studies and may contribute to a more personalized treatment and improved quality of life. We apply a methodology for discovering PD patient subtypes to patient data from the Fox Insight study (FI). The data sets are composed from questionnaires, containing patient symptoms and medication data collected through routine study visits. Dividing patients in subtypes can be translated to a problem of clustering time series data. We address this problem by using single-view clustering with k-means algorithm and multi-view spectral clustering. We describe the obtained subtypes with decision rules. Understanding decision making is crucial in medicine and we use decision trees as simple, explainable tools for describing subtypes. An important part of managing the disease is understanding the disease progression. By observing the patient's subtype changes between consecutive visits with skip-grams, we analyze the disease progression.

Jezik:Angleški jezik
Ključne besede:machine learning, data science, clustering, Parkinson's disease, multi-view learning, skip n-grams
Vrsta gradiva:Diplomsko delo/naloga (mb11)
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2021
COBISS.SI-ID:53498371 Povezava se odpre v novem oknu
Število ogledov:91
Število prenosov:76
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Podtipi parkinsonove bolezni na podlagi kratkih časovnih vrst in gručenja z več pogledi
Izvleček:
Parkinsonova bolezen (PD) je progresivna možganska motnja, za katero so značilne motnje gibanja, kot so tremor, okorelost, počasnost in omotica, ter nemotorični simptomi, ki vključujejo motnje spanja, zaprtje, težave s koncentracijo, depresijo in čustvene spremembe. Zaradi klinične heterogenosti PD so v številnih kliničnih in raziskovalnih študijah obravnavali obstoj podtipov bolnikov s PD, kar lahko prispeva k bolj prilagojenemu zdravljenju in izboljšanju kakovosti življenja. Predstavljamo metodologijo za odkrivanje podtipov bolnikov s PD z uporabo podatkov o bolnikih iz študije Fox Insight (FI). Nabori podatkov izhajajo iz vprašalnikov, za katere z rutinskimi študijskimi obiski zbirajo podatki o bolnikovih simptomih in zdravilih. Razvrščanje pacientov v podtipe je v bistvu problem združevanja podatkov iz časovnih vrst. V naši nalogi problem rešujemo z algoritmom k-means in s spektralnim združevanjem v okviru učenja z več pogledi. Opis dobljenih podtipov dobimo z generiranjem pravil. Razumevanje odločanja je v medicini ključnega pomena, zato smo odločitvena drevesa uporabili kot preprosto, a razložljivo orodje za opis podtipov. Pomemben del obvladovanja bolezni je razumevanje napredovanja bolezni. Z opazovanjem prehodov pacientov med podtipi tekom zaporednih obiskov analiziramo napredovanje bolezni s pomočjo preskočnih n-gramov.

Ključne besede:strojno učenje, podatkovne vede, razvrščanje, Parkinsonova bolezen, učenje z več pogledi, preskočni n-gram

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj