izpis_h1_title_alt

How deeply to fine-tune a convolutional neural network : a case study using a histopathology dataset
ID Kandel, Ibrahem (Avtor), ID Castelli, Mauro (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,20 MB)
MD5: EABFF0B94F03E821282391F1B85F1682

Izvleček
Accurate classification of medical images is of great importance for correct disease diagnosis. The automation of medical image classification is of great necessity because it can provide a second opinion or even a better classification in case of a shortage of experienced medical staff. Convolutional neural networks (CNN) were introduced to improve the image classification domain by eliminating the need to manually select which features to use to classify images. Training CNN from scratch requires very large annotated datasets that are scarce in the medical field. Transfer learning of CNN weights from another large non-medical dataset can help overcome the problem of medical image scarcity. Transfer learning consists of fine-tuning CNN layers to suit the new dataset. The main questions when using transfer learning are how deeply to fine-tune the network and what difference in generalization that will make. In this paper, all of the experiments were done on two histopathology datasets using three state-of-the-art architectures to systematically study the effect of block-wise fine-tuning of CNN. Results show that fine-tuning the entire network is not always the best option; especially for shallow networks, alternatively fine-tuning the top blocks can save both time and computational power and produce more robust classifiers.

Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:Str. 1-20
Številčenje:Vol. 10, iss. 10 (art. 3359)
PID:20.500.12556/RUL-124232 Povezava se odpre v novem oknu
UDK:004:78
ISSN pri članku:2076-3417
DOI:10.3390/app10103359 Povezava se odpre v novem oknu
COBISS.SI-ID:38418947 Povezava se odpre v novem oknu
Datum objave v RUL:11.01.2021
Število ogledov:859
Število prenosov:205
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:11.01.2021

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:DSAIPA/DS/0022/2018
Naslov:GADgET

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:DSAIPA/DS/0113/2019
Naslov:AICE

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj