Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Machine-learning-based multi-step heat demand forecasting in a district heating system
ID
Potočnik, Primož
(
Avtor
),
ID
Škerl, Primož
(
Avtor
),
ID
Govekar, Edvard
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,98 MB)
MD5: 2ADE9E1809C5093742DA40143B179320
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0378778820334599?via%3Dihub
Galerija slik
Izvleček
Short-term heat demand forecasting in district heating (DH) systems is essential for a sufficient heat supply and optimal operation of the DH. In this study, a machine learning based multi-step short-term heat demand forecasting approach using the data of the largest Slovenian DH system is considered. The proposed approach involved feature extraction and comparative analysis of different representative machine learning based forecasting models. Nonlinear models performed better than linear models, and the best forecasting results were obtained by Gaussian process regression (GPR), where the mean absolute normalized error was 2.94% of the maximum heating power of the DH system. The analysis confirmed the importance of accurate temperature forecasts but did not confirm the relevance of using future solar irradiation forecasts. The optimal length of training data is shown to be 3 years, and past data of up to 4 days can be used as input to increase the forecasting accuracy. The forecasting model (GPR) proposed in this study can be fitted to different DH systems. In the presented case study, it was selected to implement the online forecasting solution for the DH of Ljubljana and has been generating forecasts with a mean absolute normalized error of 2.70% since November 2019.
Jezik:
Angleški jezik
Ključne besede:
district heating
,
heat demand
,
short-term forecasting
,
machine learning
,
Gaussian process regression
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2021
Št. strani:
Str. 1-14
Številčenje:
Vol. 233
PID:
20.500.12556/RUL-124126
UDK:
697:536:004.85(045)
ISSN pri članku:
0378-7788
DOI:
10.1016/j.enbuild.2020.110673
COBISS.SI-ID:
45195779
Datum objave v RUL:
04.01.2021
Število ogledov:
1937
Število prenosov:
288
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Energy and buildings
Skrajšan naslov:
Energy build.
Založnik:
Elsevier
ISSN:
0378-7788
COBISS.SI-ID:
25395200
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
daljinsko ogrevanje
,
toplota
,
kratkoročne napovedi
,
strojno učenje
,
Gaussova regresija procesa
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0241
Naslov:
Sinergetika kompleksnih sistemov in procesov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj