izpis_h1_title_alt

Machine-learning-based multi-step heat demand forecasting in a district heating system
Potočnik, Primož (Avtor), Škerl, Primož (Avtor), Govekar, Edvard (Avtor)

.pdfPDF - Predstavitvena datoteka. Vsebina dokumenta nedostopna do 04.01.2023.
MD5: 2ADE9E1809C5093742DA40143B179320
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0378778820334599?via%3Dihub Povezava se odpre v novem oknu

Izvleček
Short-term heat demand forecasting in district heating (DH) systems is essential for a sufficient heat supply and optimal operation of the DH. In this study, a machine learning based multi-step short-term heat demand forecasting approach using the data of the largest Slovenian DH system is considered. The proposed approach involved feature extraction and comparative analysis of different representative machine learning based forecasting models. Nonlinear models performed better than linear models, and the best forecasting results were obtained by Gaussian process regression (GPR), where the mean absolute normalized error was 2.94% of the maximum heating power of the DH system. The analysis confirmed the importance of accurate temperature forecasts but did not confirm the relevance of using future solar irradiation forecasts. The optimal length of training data is shown to be 3 years, and past data of up to 4 days can be used as input to increase the forecasting accuracy. The forecasting model (GPR) proposed in this study can be fitted to different DH systems. In the presented case study, it was selected to implement the online forecasting solution for the DH of Ljubljana and has been generating forecasts with a mean absolute normalized error of 2.70% since November 2019.

Jezik:Angleški jezik
Ključne besede:district heating, heat demand, short-term forecasting, machine learning, Gaussian process regression
Vrsta gradiva:Članek v reviji (dk_c)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Leto izida:2021
Št. strani:Str. 1-14
Številčenje:Vol. 233
UDK:697:536:004.85(045)
ISSN pri članku:0378-7788
DOI:10.1016/j.enbuild.2020.110673 Povezava se odpre v novem oknu
COBISS.SI-ID:45195779 Povezava se odpre v novem oknu
Število ogledov:86
Število prenosov:64
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Energy and buildings
Skrajšan naslov:Energy build.
Založnik:Elsevier
ISSN:0378-7788
COBISS.SI-ID:25395200 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P2-0241
Naslov:Sinergetika kompleksnih sistemov in procesov

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:daljinsko ogrevanje, toplota, kratkoročne napovedi, strojno učenje, Gaussova regresija procesa

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj