izpis_h1_title_alt

Lokalizacija mej med odbojnimi površinami v deflektometrični aplikaciji
ID KOŽELJ, JANJA (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (19,22 MB)
MD5: D638FDC03AD196ED704376D61D9C8574

Abstract
V diplomski nalogi obravnamo problem detekcije mej med odbojnimi površinami med postopkom skeniranja z deflektometrijo. V tem postopku se na površino projicira črtast vzorec, kar močno otežuje lokalizacijo meje s standardnimi metodami. Zato predlagamo novo metodo za lokalizacijo mej, ki uporablja konvolucijsko nevronsko mrežo in aktivne konture. Uspešnost naše metode demonstriramo na slikah, kjer je prikazan stranski pogled avtomobila, detektiramo pa meje med vrati. Predlagana mreža je oblike enkoder dekoder in za boljše prepoznavanje vzorca uporablja razširjene konvolucijske sloje. Za najboljši postopek prileganja se izkaže robustno prileganje na segmentirani maski z uporabo aktivnih kontur, ki izboljša povprečno napako iz 5.00 na 2.67 pikslov. Predlagana metoda na testni množici doseže natančnost 0.91, priklic 0.68 in F-mero 0.76, procesiramo pa lahko približno 4.29 slik na sekundo.

Language:Slovenian
Keywords:konvolucija, nevronske mreže, semantična segmentacija, aktivne konture, deflektometrija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119551 This link opens in a new window
COBISS.SI-ID:29404675 This link opens in a new window
Publication date in RUL:09.09.2020
Views:1120
Downloads:143
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Border localization between reflective surfaces in a deflectometry application
Abstract:
In this thesis, we address the problem of border detection between reflective surfaces during the process of deflectometry. In this process a striped pattern is projected on the surface, which makes it difficult to localize border with standard methods. To address this problem, we propose a new method for border localization, which uses convolutional neural network and active contours. We demonstrate the performance of our method on the task of car door border detection from images taken from the side of a car. Proposed network has the encoder decoder architecture and contains dilated convolutional layers for better pattern recognition. We show that robust fitting on segmented masks using active contours is the best way of fitting, and it reduces mean error from 5.00 to 2.67 pixels. On test set the proposed method achieves precision of 0.91, recall of 0.68 and F-score of 0.76. The method allows processing at approximately 4.29 frames per second.

Keywords:convolution, neural networks, semantic segmentation, active contours, deflectometry

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back