izpis_h1_title_alt

Krein-Milmanov izrek za matrične konveksne množice : magistrsko delo
ID Štrekelj, Tea (Author), ID Klep, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (790,70 KB)
MD5: 4B62053E2C82EBD0877BF10C082492CB

Abstract
Teorijo konveksnih množic v Evklidskih prostorih lahko na naraven način prestavimo v nekomutativno okolje matričnih prostorov. V magistrski nalogi predstavimo matrične konveksne množice, njihove lastnosti in primere, obravnavamo matrične ekstremne točke in vpeljemo matrične izpostavljene točke. Poskušamo pa tudi razumeti, v kolikšni meri rezultati v matričnem svetu spominjajo na tiste iz klasične teorije, med katere sodi tudi Krein-Milmanov izrek. Kot sredstvo za dokaz matrične ustreznice Krein-Milmanovega izreka razložimo tudi Hahn-Banachov izrek za matrične konveksne množice.

Language:Slovenian
Keywords:(matrična) konveksna množica, (matrično) stanje, operatorski sistem, C*-algebra, Stinespringova upodobitev, (matrična) ekstremna točka, (matrična) izpostavljena točka, Hahn-Banachov izrek za matrične konveksne množice, (matrična) polara, Krein-Milman
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119287 This link opens in a new window
COBISS.SI-ID:27384835 This link opens in a new window
Publication date in RUL:06.09.2020
Views:2081
Downloads:243
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Krein-Milman theorem for matrix convex sets
Abstract:
The theory of convex sets in Euclidean spaces can be in a natural way transferred to the noncommutative setting of matrix spaces. In this master's thesis we discuss matrix convex sets, their properties and examples, we deal with matrix extreme points and introduce matrix exposed points. We also aspire to understand how much the results in the matrix world resemble those from the classical theory, such as the Krein-Milman theorem. As a device to prove the matricial analogue of the Krein-Milman theorem we explain the Hahn-Banach theorem for matrix convex sets.

Keywords:(matrix) convex set, (matrix) state, operator system, C*-algebra, Stinespring representation, (matrix) extreme point, (matrix) exposed point, Hahn-Banach theorem for matrix convex sets, (matrix) polar, Krein-Milman theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back