Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A machine learning approach to predict air quality in California
ID
Castelli, Mauro
(
Avtor
),
ID
Martins Clemente, Fabiana
(
Avtor
),
ID
Popovič, Aleš
(
Avtor
),
ID
Silva, Sara
(
Avtor
),
ID
Vanneschi, Leonardo
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(7,34 MB)
MD5: D5CE63562DB8E1D18E69F2F60E67D3A4
Galerija slik
Izvleček
Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.
Jezik:
Angleški jezik
Ključne besede:
informatics
,
ecology
,
artificial intelligence
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
PID:
20.500.12556/RUL-118023
UDK:
659.2:004
ISSN pri članku:
1076-2787
DOI:
10.1155/2020/8049504
COBISS.SI-ID:
24544771
Datum objave v RUL:
13.08.2020
Število ogledov:
1544
Število prenosov:
672
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Complexity
Skrajšan naslov:
Complexity
Založnik:
Wiley & Sons
ISSN:
1076-2787
COBISS.SI-ID:
1926171
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
13.08.2020
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
informatika
,
ekologija
,
umetna inteligenca
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj