izpis_h1_title_alt

A machine learning approach to predict air quality in California
Castelli, Mauro (Avtor), Martins Clemente, Fabiana (Avtor), Popovič, Aleš (Avtor), Silva, Sara (Avtor), Vanneschi, Leonardo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (7,34 MB)

Izvleček
Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.

Jezik:Angleški jezik
Ključne besede:informatics, ecology, artificial intelligence
Vrsta gradiva:Članek v reviji (dk_c)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Leto izida:2020
UDK:659.2:004
ISSN pri članku:1076-2787
DOI:10.1155/2020/8049504 Povezava se odpre v novem oknu
COBISS.SI-ID:24544771 Povezava se odpre v novem oknu
Licenca:CC BY 4.0
To delo je dosegljivo pod licenco Creative Commons Priznanje avtorstva 4.0 Mednarodna
Število ogledov:294
Število prenosov:399
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Complexity
Skrajšan naslov:Complexity
Založnik:Wiley & Sons
ISSN:1076-2787
COBISS.SI-ID:1926171 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:informatika, ekologija, umetna inteligenca

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj