Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Optimizing the estimation of a histogram-bin width—application to the multivariate mixture-model estimation
ID
Panić, Branislav
(
Avtor
),
ID
Klemenc, Jernej
(
Avtor
),
ID
Nagode, Marko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(14,59 MB)
MD5: EDBB400F8432867717F785CB0C4BE5E9
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2227-7390/8/7/1090
Galerija slik
Izvleček
A maximum-likelihood estimation of a multivariate mixture model's parameters is a difficult problem. One approach is to combine the REBMIX and EM algorithms. However, the REBMIX algorithm requires the use of histogram estimation, which is the most rudimentary approach to an empirical density estimation and has many drawbacks. Nevertheless, because of its simplicity, it is still one of the most commonly used techniques. The main problem is to estimate the optimum histogram-bin width, which is usually set by the number of non-overlapping, regularly spaced bins. For univariate problems it is usually denoted by an integer value; i.e., the number of bins. However, for multivariate problems, in order to obtain a histogram estimation, a regular grid must be formed. Thus, to obtain the optimum histogram estimation, an integer-optimization problem must be solved. The aim is therefore the estimation of optimum histogram binning, alone and in application to the mixture model parameter estimation with the REBMIX&EM strategy. As an estimator, the Knuth rule was used. For the optimization algorithm, a derivative based on the coordinate-descent optimization was composed. These proposals yielded promising results. The optimization algorithm was efficient and the results were accurate. When applied to the multivariate, Gaussian-mixture-model parameter estimation, the results were competitive. All the improvements were implemented in the rebmix R package.
Jezik:
Angleški jezik
Ključne besede:
histogram
,
integer optimization
,
parameter estimation
,
mixture model
,
EM
,
REBMIX
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
30 str.
Številčenje:
Vol. 8, iss. 7, art. 1090
PID:
20.500.12556/RUL-117438
UDK:
004.4(045)
ISSN pri članku:
2227-7390
DOI:
10.3390/math8071090
COBISS.SI-ID:
22207235
Datum objave v RUL:
10.07.2020
Število ogledov:
1188
Število prenosov:
365
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mathematics
Skrajšan naslov:
Mathematics
Založnik:
MDPI AG
ISSN:
2227-7390
COBISS.SI-ID:
523267865
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
03.07.2020
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
histogram
,
diskretna optimizacija
,
ocena parametrov
,
EM
,
REBMIX
,
mešani model
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
1000-18-0510
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj