izpis_h1_title_alt

Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities
ID Liang, Sihua (Avtor), ID Repovš, Dušan (Avtor), ID Zhang, Binlin (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (429,52 KB)
MD5: BE50E2AE3837BA34284AB891514D429C

Izvleček
In this paper, we are concerned with the existence and multiplicity of solutions for the fractional Choquard-type Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity: ▫$$\begin{cases} \varepsilon^{2s} N([u]^2_{s,A}) (-\Delta)^s_A u + V(x)u = (|x|^{-\alpha} \ast F(|u|^2)) f(|u|^2)u + |u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ U(x) \to 0, & \text{as} \quad |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_A$▫ is the fractional magnetic operator with ▫$0<s<1$▫, ▫$2^\ast_s = 2N/(N-2s)$▫, ▫$\alpha < \min\{N, 4s\}$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+_0$▫ is a continuous function, ▫$A\colon \mathbb{R}^N \to \mathbb{R}^N$▫ is the magnetic potential, ▫$F(|u|) =\int^{|u|}_0f(t)dt$▫, and ▫$\varepsilon > 0$▫ is a positive parameter. The electric potential ▫$V \in C(\mathbb{R}^N, \mathbb{R}^+_0)$▫ satisfies ▫$V(x)=0$▫ in some region of ▫$\mathbb{R}^N$▫, which means that this is the critical frequency case. We first prove the ▫$(PS)_c$▫ condition, by using the fractional version of the concentration compactness principle. Then, applying also the mountain pass theorem and the genus theory, we obtain the existence and multiplicity of semiclassical states for the above problem. The main feature of our problems is that the Kirchhoff term ▫$M$▫ can vanish at zero.

Jezik:Angleški jezik
Ključne besede:Choquard-type equation, critical nonlinearity, fractional magnetic operator, variational method
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
Št. strani:Str. 2473-2490
Številčenje:Vol. 43, iss. 5
PID:20.500.12556/RUL-116616 Povezava se odpre v novem oknu
UDK:517.956
ISSN pri članku:0170-4214
DOI:10.1002/mma.6057 Povezava se odpre v novem oknu
COBISS.SI-ID:18870617 Povezava se odpre v novem oknu
Datum objave v RUL:29.05.2020
Število ogledov:1235
Število prenosov:478
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Mathematical methods in the applied sciences
Skrajšan naslov:Math. methods appl. sci.
Založnik:Teubner, Wiley
ISSN:0170-4214
COBISS.SI-ID:25911808 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj