izpis_h1_title_alt

Predicting days on market to optimize real estate sales strategy
ID Castelli, Mauro (Avtor), ID Dobreva, Maria (Avtor), ID Henriques, Roberto (Avtor), ID Vanneschi, Leonardo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,54 MB)
MD5: BFF665A5BA7D6AF24792A7430D7DA3B1

Izvleček
Irregularities and frauds are frequent in the real estate market in Bulgaria due to the substantial lack of rigorous legislation. For instance, agencies frequently publish unreal or unavailable apartment listings for a cheap price, as a method to attract the attention of unaware potential new customers. For this reason, systems able to identify unreal listings and improve the transparency of listings authenticity and availability are much on demand. Recent research has highlighted that the number of days a published listing remains online can have a strong correlation with the probability of a listing being unreal. For this reason, building an accurate predictive model for the number of days a published listing will be online can be very helpful to accomplish the task of identifying fake listings. In this paper, we investigate the use of four different machine learning algorithms for this task: Lasso, Ridge, Elastic Net, and Artificial Neural Networks. The results, obtained on a vast dataset made available by the Bulgarian company Homeheed, show the appropriateness of Lasso regression.

Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:22 str.
Številčenje:Vol. 2020, art. 4603190
PID:20.500.12556/RUL-114724 Povezava se odpre v novem oknu
UDK:659.2:004
ISSN pri članku:1099-0526
DOI:10.1155/2020/4603190 Povezava se odpre v novem oknu
COBISS.SI-ID:25563110 Povezava se odpre v novem oknu
Datum objave v RUL:06.03.2020
Število ogledov:1068
Število prenosov:378
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Complexity
Skrajšan naslov:Complexity
Založnik:Wiley
COBISS.SI-ID:18282279 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:06.03.2020

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj