Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Transkripcija klavirske glasbe s konvolucijskimi nevronskimi mrežami
ID
Pešič, Miha
(
Avtor
),
ID
Marolt, Matija
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(2,82 MB)
MD5: CE6D792B20E0386B356AAB56D0463B91
Galerija slik
Izvleček
V magistrskem delu obravnavamo problem avtomatske transkripcije klavirske glasbe. Z metodami strojnega učenja želimo iz zvočnega posnetka avtomatsko zaznati zaigrane klavirske note. Po zgledu najnovejših raziskav na področju smo implementirali rešitev s konvolucijskimi nevronskimi mrežami. Poleg učenja na označenih zbirkah posnetkov smo razvili generator učnih podatkov, ki med učenjem nevronske mreže v realnem času pripravlja spektrograme in matrike referenčnih anotacij iz datotek MIDI. Zbrali smo večje število MIDI datotek različnih glasbenih zvrsti za učenje. Pripravili smo testno množico, ki poleg 10 posnetkov klasične glasbe vsebuje 60 posnetkov šestih dodatnih zvrsti glasbe. Primerjali smo rezultate modelov, učenih na različne načine. Pri evalvaciji po okvirjih z generatorjem dosežemo nekoliko nižjo mero F kot z učenjem s pravimi posnetki glasbe. Pri evalvaciji po notah brez zaključkov je učenje z generatorjem boljše, pri evalvaciji po notah z zaključki pa precej slabše od učenja s pravimi posnetki.
Jezik:
Slovenski jezik
Ključne besede:
klavirska glasba
,
transkripcija
,
nevronska mreža
Vrsta gradiva:
Magistrsko delo/naloga
Tipologija:
2.09 - Magistrsko delo
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2020
PID:
20.500.12556/RUL-114386
COBISS.SI-ID:
1538538435
Datum objave v RUL:
25.02.2020
Število ogledov:
1536
Število prenosov:
278
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PEŠIČ, Miha, 2020,
Transkripcija klavirske glasbe s konvolucijskimi nevronskimi mrežami
[na spletu]. Magistrsko delo. [Dostopano 26 marec 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=114386
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Transcription of piano music with convolutional neural networks
Izvleček:
In this thesis we tackle the problem of automatic music transcription of piano music. We wish to successfully transcribe piano notes played in an audio recording using machine learning techniques. We follow the latest developments in the field and implement a solution based on convolutional neural networks. In addition to training on annotated piano music datasets, we introduce a synthetic data generator that runs in real time during training and uses MIDI files to generate training spectrograms and groundtruth data. To train our models, we have collected a large set of MIDI files containing various genres of music. We also prepared a test set which comprises of 60 piano recordings of 6 different genres in addition to 10 recordings of classical music. We evaluate the results using different training methods. Frame-wise evaluation yields slightly better results using real piano test data than using synthetic data. We obtain better note-wise results without offsets using synthetic data, however note-wise evaluation yields superior results using real training data.
Ključne besede:
piano music
,
transcription
,
neural network
Podobna dela
Podobna dela v RUL:
Five invasive alien plant powders, Norway spruce (Picea abies [L.] H. Karst.) wood ash and diatomaceous earth against Sitophilus oryzae (L.) adults
The effectiveness of three essential oils for controlling the rice weevil (Sitophilus oryzae [L.], Coleoptera, Curculionidae) in stored wheat
Impact of geochemical composition of diatomaceous earth on its insecticidal activity against adults of Sitophilus oryzae (L.) (Coleoptera: Curculionidae)
The effect of diatomaceous earth of different origin, temperature and relative humidity against adults of rice weevil (Sitophylus oryzae [L.], Coleoptera, Curculionidae) in stored wheat
Intraspecific variability of Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) as biological control agent of rice weevil (Sitophylus oryzae [L.], Coleoptera, Curculionidae) adults
Podobna dela v drugih slovenskih zbirkah:
Ni podobnih del
Nazaj