izpis_h1_title_alt

Short-term streamflow forecasting using the feature-enhanced regression model
Bai, Yun (Avtor), Bezak, Nejc (Avtor), Lebar, Klaudija (Avtor), Klun, Mateja (Avtor), Zhang, Jin (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,22 MB)
MD5: A7D13E36EDE6F1D9749C40844064313D
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/content/pdf/10.1007%2Fs11269-019-02399-1.pdf Povezava se odpre v novem oknu

Izvleček
Reservoir inflow forecasting is extremely important for the management of a reservoir. In practice, accurate forecasting depends on the feature learning performance. To better address this issue, this paper proposed a feature-enhanced regression model (FER), which combined stack autoencoder (SAE) with long short-term memory (LSTM). This model had two constituents: (1) The SAE was constructed to learn a representation as close as possible to the original inputs. Through deep learning, the enhanced feature could be captured sufficiently. (2) The LSTM was established to simulate the mapping between the enhanced features and the outputs. Under recursive modeling, the patterns of correlation in the short term and dependence in the long term were considered comprehensively. To estimate the performance of the FER model, two historical daily discharge series were investigated, i.e., the Yangtze River in China and the Sava Dolinka River in Slovenia. The proposed model was compared with other machine-learning methods (i.e., the LSTM, SAE-based neural network, and traditional neural network). The results demonstrated that the proposed FER model yields the best forecasting performance in terms of six evaluation criteria. The proposed model integrates the deep learning and recursive modeling, and thus being beneficial to exploring complex features in the reservoir inflow forecasting. Moreover, for smaller catchments with significant torrential characteristics, more data are needed (e.g., at least 20 years) to effectively train the model and to obtain accurate flood-forecasting results.

Jezik:Angleški jezik
Ključne besede:long short-term memory, stack autoencoder, feature enhanced, daily reservoir inflow, forecast
Vrsta gradiva:Znanstveno delo (r2)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Leto izida:2019
Založnik:Springer Nature B. V.
Št. strani:Str. 4783-4797
Številčenje:Letn.33, št. nov.
UDK:626/627
ISSN pri članku:0920-4741
DOI:10.1007/s11269-019-02399-1 Povezava se odpre v novem oknu
COBISS.SI-ID:8969057 Povezava se odpre v novem oknu
Število ogledov:489
Število prenosov:268
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Water resources management
Skrajšan naslov:Water resour. manag.
Založnik:Reidel
ISSN:0920-4741
COBISS.SI-ID:512526105 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P2-0180
Naslov:Vodarstvo in geotehnika: orodja in metode za analize in simulacije procesov ter razvoj tehnologij.

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:24.02.2020

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:hidrotehnika, dolgotrajni kratkoročni spomin, avtoenkoder, vhodna spremenljivka, dnevni vtok v rezervoar, napovedi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj