izpis_h1_title_alt

Gradnja napovednih modelov za klike na oglase v družabnih omrežjih
ID Novak, Vesna (Avtor), ID Guid, Matej (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,04 MB)
MD5: 9FC2F3EEABC5A6268BBAE07F385FEEE3

Izvleček
Oglaševanje na družabnih omrežjih postaja vse bolj pomemben način promocije izdelkov in storitev. Tipična oglaševalska kampanja na družabnem omrežju vsebuje več skupin oglasov, vsaka skupina oglasov pa običajno vsebuje več oglasov. Pri upravljanju oglaševalskih kampanj so še posebej pomembne odločitve o razporejanju oglaševalskega denarja (ang. budget allocation) med izbrane oglase in oglasne skupine. Zelo koristno bi bilo vnaprej vedeti, kako uspešni bodo posamezni oglasi oz. oglasne skupine v neposredni bližnji prihodnosti. V magistrskem delu opisujemo postopek za gradnjo napovednih modelov za klike na oglase v družabnih omrežjih. Približati se želimo perspektivi upravljalca oglaševalskih akcij, ki ima tipično na voljo statistike oglasov v preteklih dneh, sprejeti pa mora odločitev, katerim oglasom bo v prihodnje namenil več oz. manj oglaševalskega denarja. Z optimizacijo razporejanja oglaševalskega denarja lahko korenito izboljšamo uspešnost upravljanja oglaševalske kampanje in gradnja napovednih modelov ima pri tem ključno vlogo. Uspeh v tem kontekstu merimo v številu klikov, ki so jih oglasi deležni v okviru omejenega budžeta. Glavni rezultat magistrske naloge je razvoj in opis postopka za gradnjo napovednih modelov za napovedovanje klikov na oglase v družabnih omrežjih. Primerjali smo različne algoritme za napovedovanje časovnih vrst (ang. time series forecasting) na družabnih omrežjih Facebook in Twitter. Predmet primerjave je bila zmožnost njihovega napovedovanja eno ali več časovnih točk vnaprej. Osredotočili smo se predvsem na napovedovanje števila klikov na oglase. Rezultati eksperimentov so pokazali, da uporabljene metode, še zlasti nevronske mreže z dolgim kratkoročnim spominom (ang. Long Short-Term Memory) in regresijski modeli, pridobljeni z algoritmom XGBoost, omogočajo smiselne napovedi do 24 ur vnaprej.

Jezik:Slovenski jezik
Ključne besede:podatkovna znanost, napovedovanje časovnih vrst, spletno oglaševanje, družabna omrežja, upravljanje oglaševalskih kampanj, napovedovanje klikov, Facebook, Twitter
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2019
PID:20.500.12556/RUL-112817 Povezava se odpre v novem oknu
COBISS.SI-ID:1538452419 Povezava se odpre v novem oknu
Datum objave v RUL:14.11.2019
Število ogledov:1357
Število prenosov:241
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Building prediction models for advertisement clicks in social networks
Izvleček:
Social media advertising is becoming increasingly important in promoting products and services. A typical social networking campaign contains multiple ad groups, and each ad group typically contains multiple ads. When managing advertising campaigns, budget allocation for selected ads and ad groups is particularly important. It would be very helpful to know in advance how well specific ads or groups of ads will perform in the near future. The master thesis describes the process of building predictive models for advertisement clicks in social networks. We want to get closer to the perspective of a campaign manager who typically has ad statistics for the past days, but needs to decide how to distribute the advertising budget among ads in the future. By optimizing the allocation of advertising money, we can radically improve the performance of advertising campaign management, where the development of predictive models plays a key role. Success in this regard is measured by the number of clicks the ads receive within a limited budget. The main result of the master thesis is development and description of a process for building prediction models for predicting clicks on ads in social networks. We compared different algorithms for time series forecasting on the Facebook and Twitter social networks. The subject of the comparison was their ability to predict one or more time steps in advance. We focused primarily on predicting the number of clicks on ads. The results of the experiments showed that the methods used, especially the long short-term memory neural networks and the regression models obtained with the XGBoost algorithm, provide meaningful predictions for up to 24 hours in advance.

Ključne besede:data science, time series forecasting, online advertising, social media, managing campaigns, predicting ad clicks, Facebook, Twitter

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj