izpis_h1_title_alt

Verjetnostna segmentacija tumorjev v področju glave in vratu
ID Koritnik, Andraž (Avtor), ID Strojan, Primož (Komentor), ID Jeraj, Robert (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (3,36 MB)
MD5: 07D1A84CC28BD3201EA87646A7778F94

Izvleček
Segmentacija tumorjev je eden izmed najpomembnejših korakov pri načrtovanju zdravljenja na področju onkologije. Trenutno načrtovanje radioterapije temelji na opredelitvi 3D binarne mape tumorja, ki nastane pri računalniški ali ročni segmentaciji CT slike. Slednja je v klinični rabi pogostejša, njena subjektivna narava pa je vir precejšnjih negotovosti, ki so zaradi binarnega pristopa opredelitve tumorja največje na robovih tarčnih volumnov. Vodijo lahko v neustrezno dozno porazdelitev pri radioterapiji in povzročajo slabo reproducibilnost načrtovanja zdravljenja. V magistrski nalogi smo razvili nov pristop opredelitve tumorja, s katerim bi v bodoče lahko zmanjšali vpliv negotovosti in dosegli boljšo reproducibilnost zdravljenja. Razvili smo novo metodo opredelitve tarčnih volumnov, ki na podlagi PET in CT slike ustvari verjetnostno mapo tumorja v področju glave in vratu. Vključuje opis visoke in nizke verjetnosti za prisotnost tumorja ter oceno negotovosti verjetnostnih tarčnih volumnov. Model glede na vrednost privzema radiofarmaka v vsakem izmed volumskih elementov PET slike ustvari mapo visoke verjetnosti za prisotnost bolezni. Nato v odvisnosti od razdalje in okoliške anatomije izračuna verjetnost mikroskopske infiltracije. S tem se verjetnostna mapa visoke verjetnosti razširi na mapo nizke verjetnosti za prisotnost tumorja. Metoda vključuje oceno negotovosti verjetnostne mape prisotnosti tumorja, katere dva glavna prispevka sta slikovne negotovosti in negotovosti mikroskopske infiltracije tumorja. Prve oceni na podlagi znanih negotovosti pri PET slikanju, medtem ko negotovosti mikroskopske infiltracije izračuna iz rezultatov modela pri različnih vrednostih parametra, ki opisuje doseg mikroskopske infiltracije tumorja. Rezultate smo primerjali s klinično segmentacijo - binarno mapo prisotnosti tumorja. Iz posameznih transverzalnih rezin je razvidno, da na nekaterih področjih verjetnostna in binarna mapa prisotnosti tumorja sicer sovpadata, pri obeh bolnikih, ki jih obravnavamo pa je območje neničelne verjetnosti za prisotnost tumorja, določeno z modelom, manjše od območja binarne mape klinične segmentacije. Negotovost modela in verjetnostne mape prisotnosti tumorja je vsota negotovosti mikroskopske infiltracije in slikovnih negotovosti. Izkaže se, da prevladajo slednje, njihov prispevek pa znaša približno trikratnik negotovosti mikroskopske infiltracije tumorja. Uporaba modela na podlagi verjetnostnega pristopa k opisu prisotnosti tumorja in razumevanja negotovosti na primerih dveh bolnikov, ki jih obravnavamo služi kot dobro izhodišče za nadaljevanje tovrstne študije, vendar bo samo analiza večjega števila bolnikov z ustrezno dolgimi časi sledenja ustrezno ovrednotila napredek k boljši reproducibilnosti vrisovanja tarčnih volumnov in zdravljenja v radioterapiji.

Jezik:Slovenski jezik
Ključne besede:načrtovanje radioterapije, segmentacija tumorja, verjetnostna mapa prisotnosti tumorja, zmanjšanje negotovosti, reproducibilnost zdravljenja
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2019
PID:20.500.12556/RUL-112660 Povezava se odpre v novem oknu
COBISS.SI-ID:3380324 Povezava se odpre v novem oknu
Datum objave v RUL:31.10.2019
Število ogledov:1946
Število prenosov:285
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Probabilistic segmentation of head and neck tumors
Izvleček:
Tumor segmentation for radiation therapy is one of the most important parts of treatment planning. Current treatment planning is based on an interpretation of the tumor's binary 3D map, which is created by automated or manual segmentation of CT scans. The latter is used more frequently in clinical practice. The subjective nature of manual segmentation can lead to great observer variability and segmentation uncertainty, which is the greatest at the edge of target volumes. This uncertainty can lead to a inappropriately distributed radiotherapy dose and poor repeatability of treatment planning. In this master thesis, we have developed a new approach to defining a tumor volume that could reduce the effect of uncertainty and could potentially lead to increased repeatability of treatment. We have developed a new method for specifying target volumes based on a PET and a CT scan by creating a probabilistic tumor likelihood map in the head and neck area. It contains the high and low likelihood tumor maps and target volumes uncertainty assessment. Depending on the radiotracer uptake in each voxel of a PET scan, the model first creates a high likelihood map of disease presence. Depending on the distance and surrounding anatomy, model calculates the likelihood of microscopic infiltration. In this part, the map of high likelihood is expanded to a map of low likelihood for tumor presence. The method also includes the evaluation of tumor likelihood map uncertainty, which has two main contributions - imaging uncertainties and uncertainty of microscopic tumor infiltration. Imaging uncertainties are assessed based on known uncertainties of a PET scan, whereas the uncertainty of microscopic infiltration is calculated based on modeling results at different parameter values of microscopic tumor infiltration. Tumor likelihood maps were compared to clinical segmentation -- the binary maps of tumor presence. Individual axial slices show that in some areas the likelihood and the binary map of tumor presence overlap for both analyzed patients. In other parts, area of non-zero likelihood for tumor presence was smaller than the binary map of clinical segmentation. Uncertainty of the model and tumor presence likelihood map is a combination of microscopic infiltration uncertainties and image uncertainties. The results show that the latter was the dominant factor for the analyzed cases, with its contribution being approximately three times greater than the uncertainty of microscopic tumor infiltration. Use of the probability based approach of defining tumor presence and the evaluation of uncertainty based on the two patients used in the analysis serves as a good proof of concept. Only an expanded study with a larger population size and appropriately long follow up would be needed for better repeatability of specifying target volumes and treatment planning in radiotherapy.

Ključne besede:radiotherapy planning, tumor segmentation, tumor likelihood map, uncertainties reduction, reproducibility of treatement

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj