Bacterial resistance to clinically used antibiotics is growing day by day and it is thus one of the main threats to maintaining health and vitality of people. One of the methods of delimiting bacterial resistance is discovering new substances that function with a mechanism which differs from already established antibacterial substances. Peptidoglycan biosynthesis has been one of the main targets of antibacterial substances for a long time but the main clinically used substances still only inhibit the late stages of biosynthesis while the cytoplasmic part of peptidoglycan biosynthesis remains rather unused.
In master’s thesis we focused on synthesis of potential inhibitors of ligases MurC-F, ATP dependent enzymes that catalyse the binding of aminoacids to glycan chain. The solutions have been designed on the base of the lead compound 5-(4-(furan-2-yl)-2,6-dimethylstyryl)-3-(1H-tetrazol-5-yl)pyridine. We have synthesized two types of compounds: 2-aminopyridine and 3,5-dimethylphenol ligase MurC-F inhibitors. The decision for synthesising 2-aminopyridine ligase Mur inhibitors was made on the presumption that the amino group on pyridine contributes to binding to the ATP binding site of ligases Mur. 3,5-dimethylphenol ligase Mur inhibitors have been designed with altering tetrazole and furan part of the lead compound with functional groups from compounds that have proven potentially effective in previous testings.
Neither of synthesised solutions displayed an inhibitory activity. Especially 2-aminopyridine compounds showed low solubility in the majority of solvents, which has affected the synthesis of some compounds. Based on the results we can conclude that 2-aminopyridine compounds do not bind in the ATP binding site as proposed and that the selected functional groups of 3,5-dimethylphenol compounds have a negative impact on binding into the binding site and that the compounds with furan functional group bind differentely than the ones without it. Regardless, the findings are important for the further development of new ligase Mur inhibitors by being differently structurally modified.
|