Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Učinkovita implementacija sledilnika CSR-DCF
ID
MUHIČ, ANDREJ
(
Avtor
),
ID
Kristan, Matej
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(3,42 MB)
MD5: ED91A33956363B62BDA64FEA42A4334C
Galerija slik
Izvleček
V diplomski nalogi smo predstavili problem vizualnega sledenja poljubnemu objektu skozi sekvenco slik. Opisali smo diskriminativni korelacijski filter, ki predstavlja temeljno orodje za izgradnjo našega sledilnika. Osredotočili smo se na metodo CSR-DCF, ki korelacijske filtre izboljša z uporabo maske in kanalskih uteži. Maska določa, kateri piksli so pomembni za učenje filtra. Izračuna se jo na podlagi barvnega ujemanja ter prostorske zanesljivosti, uteži pa določajo diskriminativno moč posameznega kanala. Sledilnik je na lestvici VOT med najboljšimi, vendar je njegova glavna pomanjkljivost neučinkovita implementacija v jeziku Matlab. Ker smo želeli, da bi bil sledilnik široko dostopen ter da bi omogočal boljšo izrabo procesorske moči, smo ga implementirali v programskem jeziku C++ in ga vključili v prosto dostopno knjižnico OpenCV. S pomočjo ogrodja za testiranje kratkoročnih sledilnikov VOT smo izvedli analizo različnih parametrov sledilnika in primerjavo z originalno implementacijo v jeziku Matlab. Prišli smo do zaključka, da naša implementacija doseže primerljive rezultate ob višji hitrosti delovanja. Trenutno je sledilnik najboljši med vsemi sledilniki v knjižnici OpenCV, o čemer govori tudi dejstvo, da je dosegel prvo mesto v kategoriji realnočasovnih sledilnikov na lestvici VOT2017.
Jezik:
Slovenski jezik
Ključne besede:
računalniški vid
,
vizualno sledenje
,
detekcija
,
korelacijski filtri
,
sledilnik
Vrsta gradiva:
Diplomsko delo/naloga
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2019
PID:
20.500.12556/RUL-111522
COBISS.SI-ID:
1538395075
Datum objave v RUL:
02.10.2019
Število ogledov:
2438
Število prenosov:
256
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MUHIČ, ANDREJ, 2019,
Učinkovita implementacija sledilnika CSR-DCF
[na spletu]. Diplomsko delo. [Dostopano 20 marec 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=111522
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
An efficient implementation of the CSR-DCF tracker
Izvleček:
In this thesis we addressed the problem of visually tracking an object in a sequence of images. We described the discriminative correlation filter, which is a building block for our tracker. We also described the CSR-DCF method, that improves correlation filters by using a binary mask and channel weights. The mask determines which pixels are important for filter learning, and is calculated based on appearance likehood and spatial likehood, whereas channel weights determine the discriminative power of each channel. The tracker is one of the best on the VOT challenge, but its main drawback is the inefficient implementation in Matlab. We wanted to make the tracker widely accessible and have it run more efficiently. That is why we implemented it using C++ programming language and added it to OpenCV library. We used VOT framework to test the effects of different parameters on the speed and accuracy of this tracker, and to compare the original implementation in Matlab to ours. We concluded that our implementation produces similar results while running at a higher speed. The tracker is currently the best in OpenCV library, and was ranked first among realtime trackers on VOT2017.
Ključne besede:
computer vision
,
visual tracking
,
detection
,
correlation filters
,
tracker
Podobna dela
Podobna dela v RUL:
Iščem podobna dela...
Podobna dela v drugih slovenskih zbirkah:
Nazaj