V tem delu opravimo eksperimentalno analizo in evalvacijo različnih metod generiranja nasprotniških primerov oz. evalviramo njihove vplive na različne tipe klasifikatorjev slik. Namen analize je bil pridobiti čim več znanja o nasprotniških primerih. Metode ustvarjanja nasprotniških primerov je zahtevno primerjati, ker vse uporabljajo drugačne tipe parametrov. Da se znebimo skrbi glede določanja optimalnih parametrov, uvedemo točnostno-perturbacijsko krivuljo, s katero lahko veliko bolj natančno ocenimo, koliko je klasifikator robusten pri obrambi oz. koliko je generator nasprotniških primerov uspešen pri napadu. S to krivuljo smo analizirali tudi obrambno metodo učenja na nasprotniških primerih. Rezultati kažejo, da so mreže z radialnimi baznimi funkcijami naravno bolj robustne proti takšnim napadom, tudi če v večini primerov niso primerne za klasifikacijo slik. Opazili smo še šibko korelacijo med zmožnostjo generalizacije klasifikatorjev ter njihovo odpornostjo pred nasprotniškimi primeri.
|