izpis_h1_title_alt

Regresija z Gaussovimi procesi : delo diplomskega seminarja
ID Kovačič, Sara (Author), ID Peperko, Aljoša (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (918,01 KB)
MD5: 7F60A96AE6A3DF2BC1ED9D77CC9CADCA

Abstract
V delu je predstavljena regresija z Gaussovimi procesi iz vidika uteženega prostora in s pogledom iz prostora funkcij. Ponovljenih je nekaj osnov Bayesove statistike in lastnosti normalne porazdelitve. Za namene modeliranja in strojnega učenja je predstavljena tudi teorija učenja modela. Ker so z Gaussovimi procesi tesno povezane kovariančne funkcije, je predstavljenih nekaj najpogostejših kovariančnih funkcij. V empiričnem delu naloge sta opisana Pythonova knjižnica za strojno učenje Scikit-learn in primer regresije z Gaussovimi procesi na rezultatih nacionalnega preverjanja znanja za osnovnošolce iz leta 2019.

Language:Slovenian
Keywords:Gaussov proces, kovariančna funkcija, regresija, strojno učenje
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110969 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18737241 This link opens in a new window
Publication date in RUL:21.09.2019
Views:1966
Downloads:299
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Gaussian process regression
Abstract:
The thesis presents the Gaussian process regression from the weight space view and the function space view. It examines some of Bayesian statistics and normal distribution properties. For modeling and machine learning purposes the model learning theory is also presented. Since covariance functions are tightly connected to the Gaussian process the thesis contains a presentation of the most frequent covariance functions. The empirical part of the thesis includes a description of Python’s Scikit-learn machine learning library as well as an example of the Gaussian process regression based on the results of the 2019 national assessment of elementary school students in Slovenia.

Keywords:Gaussian process, covariance function, regression, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back