Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Regresija z Gaussovimi procesi : delo diplomskega seminarja
ID
Kovačič, Sara
(
Author
),
ID
Peperko, Aljoša
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(918,01 KB)
MD5: 7F60A96AE6A3DF2BC1ED9D77CC9CADCA
Image galllery
Abstract
V delu je predstavljena regresija z Gaussovimi procesi iz vidika uteženega prostora in s pogledom iz prostora funkcij. Ponovljenih je nekaj osnov Bayesove statistike in lastnosti normalne porazdelitve. Za namene modeliranja in strojnega učenja je predstavljena tudi teorija učenja modela. Ker so z Gaussovimi procesi tesno povezane kovariančne funkcije, je predstavljenih nekaj najpogostejših kovariančnih funkcij. V empiričnem delu naloge sta opisana Pythonova knjižnica za strojno učenje Scikit-learn in primer regresije z Gaussovimi procesi na rezultatih nacionalnega preverjanja znanja za osnovnošolce iz leta 2019.
Language:
Slovenian
Keywords:
Gaussov proces
,
kovariančna funkcija
,
regresija
,
strojno učenje
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2019
PID:
20.500.12556/RUL-110969
UDC:
519.2
COBISS.SI-ID:
18737241
Publication date in RUL:
21.09.2019
Views:
1941
Downloads:
298
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Gaussian process regression
Abstract:
The thesis presents the Gaussian process regression from the weight space view and the function space view. It examines some of Bayesian statistics and normal distribution properties. For modeling and machine learning purposes the model learning theory is also presented. Since covariance functions are tightly connected to the Gaussian process the thesis contains a presentation of the most frequent covariance functions. The empirical part of the thesis includes a description of Python’s Scikit-learn machine learning library as well as an example of the Gaussian process regression based on the results of the 2019 national assessment of elementary school students in Slovenia.
Keywords:
Gaussian process
,
covariance function
,
regression
,
machine learning
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back