izpis_h1_title_alt

Ponceletov izrek : delo diplomskega seminarja
ID Močnik, Sara (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (433,88 KB)
MD5: BE2DD1BF711B692AA3125425C63E563A

Abstract
Ponceletov izrek pravi, da če za stožnici $S_1$ in $S_2$ obstaja $n$-kotnik, ki je včrtan stožnici $S_1$ in očrtan stožnici $S_2$, potem za $S_1$ in $S_2$ obstaja neskončno takih $n$-kotnikov. Vsaka točka na $S_1$ je oglišče kakega opisanega $n$-kotnika in vsaka točka na $S_2$ leži na stranici kakega opisanega $n$-kotnika. V realni projektivni ravnini najprej predstavimo in dokažemo poseben primer Ponceletovega izreka za trikotnike in nato še splošni izrek. Pri tem si pomagamo s Pascalovim izrekom, Brianchonovim izrekom, Carnotovim izrekom, dualom Carnotovega izreka in nekaj pomožnimi trditvami.

Language:Slovenian
Keywords:Ponceletov izrek, projektivna geometrija, stožnica
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110745 This link opens in a new window
UDC:514
COBISS.SI-ID:18821209 This link opens in a new window
Publication date in RUL:19.09.2019
Views:1827
Downloads:246
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Poncelet's theorem
Abstract:
Poncelet's theorem states, that if $n$-sided polygon is inscribed in conic $S_1$ and circumscribed about conic $S_2$, then there exists infinitely many of such polygons. Moreover, for any point $P$ of $S_1$, there exists an $n$-sided polygon, also inscribed in conic $S_1$ and circumscribed about conic $S_2$, which has $P$ as one of its vertices, and for any point $R$ of $S_2$, there exists an $n$-sided polygon, also inscribed in conic $S_1$ and circumscribed about conic $S_2$, such that tangent to $S_2$ from $R$ is one of its lines. In real projective plane we first explain special case of Poncelet's theorem for triangles and then the general case. For that we use Pascal's theorem, Brianchon's theorem, Carnot's theorem, dual of Carnot's theorem and some other claims.

Keywords:Poncelet's theorem, projective geometry, conic

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back