The goal of the thesis was to use the Monte Carlo Tree Search (MCTS) and deep neural networks to build an intelligent agent for the game of Gomoku. We used the Alpha Zero approach that has combined Monte Carlo Tree Search and a convolutional neural network. Just like Alpha Zero, our agent was trained solely from self-play, without any human knowledge about the game; it was told only the rules of the game. After 1500 games of self-play it defeated a computer player, which was built with pure MCTS. It has also reached satisfactory results in games against human players, it is hard to be defeated by human players. Namely, the agent can identify the typical threats, which human players use to win.
|