izpis_h1_title_alt

Molekularne invariante, porojene iz ekscentričnosti vozlišč : delo diplomskega seminarja
ID Kerkoč, Matija (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (440,46 KB)
MD5: 7EE1A0886F4F4D53AB9597A07EAAF2FC

Abstract
Molekularne invariante (včasih imenovane tudi topološki indeksi) so lastnosti grafov, ki jih uporabljamo za napovedovanje kemijskih ter bioloških lastnosti molekul na podlagi strukturnih lastnosti njim prirejenih grafov. Nekatere med njimi so se izkazale za učinkovito sredstvo v matematični kemiji. V delu bomo predstavili nekaj najbolj znanih invariant, podrobneje pa bomo predstavili indeks ekscentričnost-stopnja, ki je ena izmed novejših invariant, ki so se izkazale za najbolj učinkovite. Podali bomo eksplicitne formule za izračun indeksa ekscentričnost-stopnja za benzenoidne grafe. Vpeljali bomo pojem kartezičnega produkta grafov, ki je naravna struktura mnogih družin kemijskih molekul. Naš končni cilj pa bo izpeljava eksplicitne formule za izračun indeksa ekscentričnost-stopnja v kartezičnem produktu.

Language:Slovenian
Keywords:ekscentričnost grafa, benzenoidni grafi, grafovske invariante, kartezični produkt grafov, indeks ekscentričnost-stopnja
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110375 This link opens in a new window
UDC:519.1
COBISS.SI-ID:18724953 This link opens in a new window
Publication date in RUL:14.09.2019
Views:2804
Downloads:228
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Eccentricity based molecular invariants
Abstract:
Molecular invariants (also known as topological indices) has proven themselves as good predictors of chemical and biological activities. We can apply exact formulas on hydrogen stripped chemical graphs and try to predict chemical activity of molecules based on their structure. In this diploma thesis we will define several molecular invariants with emphasis on eccentric connectivity index which is one of novel molecular invariants. We will compute exact formulas for different families of benzenoid graphs. We will then define Cartesian product of graphs, which is a natural structure in several chemical molecules. Our final goal is to obtain an explicit formula for eccentric connectivity index in Cartesian products.

Keywords:graph eccentricity, benzenoid graphs, graph invariants, Cartesian graph product, eccentric connectivity index

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back