Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Gibbsov fenomen : delo diplomskega seminarja
ID
Kerševan, Sandra
(
Author
),
ID
Dragičević, Oliver
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(906,43 KB)
MD5: 31DDB461BC563F26CF9E022D4FD51B02
Image galllery
Abstract
Gibbsov fenomen je pojav, ki ga lahko opazimo, ko gledamo delne vsote Fourierove vrste v bližini točke nezveznosti drugače zvezne funkcije. Ne glede na to, da je neskončna Fourierova vrsta enaka funkciji, ki jo aproksimiramo, povsod, kjer je ta zvezna, njene delne vsote vedno presežejo vrednost funkcije v skoku za fiksno vrednost, ki je odvisna samo od leve in desne limite funkcije v točki nezveznosti ter sinusovega integrala, izračunanega v vrednosti $\pi$. Ta fenomen se pojavi pri vseh zveznih funkcijah s končnim številom točk nezveznosti.
Language:
Slovenian
Keywords:
Gibbsov fenomen
,
Fourierove vrste
,
odsekoma zvezne funkcije
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2019
PID:
20.500.12556/RUL-110218
UDC:
517.52
COBISS.SI-ID:
18820697
Publication date in RUL:
13.09.2019
Views:
2083
Downloads:
211
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Gibbs phenomenon
Abstract:
Gibbs phenomenon is a occurrence which can be observed when we look at the partial sums of the Fourier series near the point of discontinuity of otherwise continuous function. Although the infinite Fourier series is equal to the function that we approximate where the function is continuous, partial sums always exceed the value of the jump function for a fixed value that depends only on the left and right limits of the function at the point of discontinuity and the sinus integral calculated in the value $\pi$. This phenomenon occurs for all continuous functions with a finite number of points of discontinuity.
Keywords:
Gibbs phenomenon
,
Fourier series
,
piecewise continuous functions
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back