izpis_h1_title_alt

Steinerjev porizem in njegova prostorska analogija : magistrsko delo
ID Kastelic, Nejc (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,59 MB)
MD5: B6138A7C53BE16B349697337FA4820C3

Abstract
Steinerjevo verigo sestavlja zaporedje krožnic tangentnih na dani dve nesekajoči se krožnici, zaporedna člena zaporedja pa sta med sabo tangentna. Inverzija na krožnico, o kateri dokažemo nekaj lastnosti, nam problem prevede v iskanje Steinerjeve verige med dvema koncentričnima krožnicama. Uspeli smo poiskati tudi formulo, preko katere lahko hitro preverimo, ali Steinerjeva veriga obstaja ali ne in iz koliko krožnic je sestavljena. Nastavili smo tudi pot iskanja rešitve preko Möbiousovih transformacij. Analogija v prostoru krožnice nadomesti s sferami, Steinerjevo verigo pa nadomesti ustrezna Steinerjeva družina sfer, katere središča v koncentričnem primeru so oglišča ustreznih Platonskih teles. Rešitve proučujemo z obravnavo prostorskih kotov. Tudi tukaj smo našli formulo, ki pove za kateri sferi je sploh možno poiskati take družine sfer.

Language:Slovenian
Keywords:inverzija čez krožnico, Steinerjev porizem, Steinerjeva veriga, potenca točke, inverzija v prostoru, diederski kot, prostorski kot, Platonsko telo, Eulerjeva poliederska formula
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-107930 This link opens in a new window
UDC:514
COBISS.SI-ID:18632793 This link opens in a new window
Publication date in RUL:07.06.2019
Views:1427
Downloads:274
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Steiner chain and its spatial analogy
Abstract:
The Steiner chain consists of a set of circles, which are tangent to two given non-intersecting circles and each circle in the chain is tangent to the previous and next circle in the chain. Inversion in a circle, for which we have proven some properties, translates the problem into the search of a Steiner chain between two concentric circles. We have also succeeded in finding a formula that makes it easier to check whether the Steiner chain exists and how many circles it consists of. Through analogy in space, circles are replaced by spheres, whereas the Steiner chain is replaced by the Steiner family of spheres whose centers in concentric cases are the angles of corresponding Platonic solids. Solutions are studied through the treatment of solid angles. Here too, we have found a formula which tells us which spheres it is possible to find the Steiner family of spheres for.

Keywords:circle inversion, Steiner's Porism, Steiner chain, point's circle power, sphere inversion, dihedral angle, solid angle, Platonic polyhedra, Euler's polyhedron formula

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back