izpis_h1_title_alt

Predicting tumour response to anti-PD-1 immunotherapy with computational modelling
ID Valentinuzzi, Damijan (Avtor), ID Simončič, Urban (Avtor), ID Uršič, Katja (Avtor), ID Vrankar, Martina (Avtor), ID Turk, Maruša (Avtor), ID Jeraj, Robert (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,19 MB)
MD5: 0C1CB143EAE5156413E364ADA8EA5FE2

Izvleček
Cancer immunotherapy is a rapidly developing field, with numerous drugs and therapy combinations waiting to be tested in pre-clinical and clinical settings. However, the costly and time-consuming trial-and-error approach to development of new treatment paradigms creates a research bottleneck, motivating the development of complementary approaches. Computational modelling is a compelling candidate for this task, however, difficulties associated with the validation of such models limit their use in pre-clinical and clinical settings. Here we propose a bottom-up deterministic computational model to simulate tumour response to treatment with anti-programmed-death-1 antibodies (anti-PD-1). The model was built with validation in mind, and so contains minimum number of parameters, and only four free parameters. Moreover, all model parameters can be measured experimentally. Free parameters were tuned by fitting the model to experimental data from the literature, using B16-F10 murine melanoma implanted into wild type (C57BL/6), as well as into immunodeficient (NSG) mice strains, and treated with anti-PD-1 antibodies. The model's predictive ability was verified on two independent datasets from literature with different but well-known inputs. To identify possible biomarkers of response to anti-PD-1 immunotherapy, sensitivity study of key model parameters was performed. Good agreement between the simulated tumour growth curves and the experimental data was achieved, with mean relative deviations in the range of 13%–20%. Our sensitivity study demonstrated that major histocompatibility complex (MHC) class I expression was the only parameter able to clearly discriminate responders from non-responders to anti-PD-1 therapy. Additionally, the results of sensitivity studies suggest that MHC class I expression might affect the predictive ability of other biomarkers that are currently used in the clinics, such as PD-1 ligand (PD-L1) expression. Interestingly, our model predicts the best response to anti-PD-1 therapy for subjects with moderate PD-L1 values. Such computational models show promise to support, guide and accelerate future immunotherapy research.

Jezik:Angleški jezik
Ključne besede:oncology, tumors, immunotherapy, computational modeling
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2019
Št. strani:17 str.
Številčenje:Vol. 64, art. no. 025017
UDK:616-006
ISSN pri članku:0031-9155
DOI:10.1088/1361-6560/aaf96c Povezava se odpre v novem oknu
COBISS.SI-ID:3287652 Povezava se odpre v novem oknu
Datum objave v RUL:17.01.2019
Število ogledov:803
Število prenosov:315
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Physics in Medicine & Biology
Skrajšan naslov:Phys. Med. Biol.
Založnik:American Institute of Physics
ISSN:0031-9155
COBISS.SI-ID:26128896 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:onkologija, tumorji, imunoterapija, računalniško modeliranje

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj