izpis_h1_title_alt

Transportation mode detection based on mobile sensor data
ID Urbančič, Jasna (Avtor), ID Pejović, Veljko (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Mladenić, Dunja (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,31 MB)
MD5: D813EFEBD7104B64E6BBD26F1CC24551

Izvleček
This thesis addresses transportation mode detection based primarily on mobile phone data using machine learning methods. Our approach uses short samples of accelerometer readings taken while traveling in a vehicle to distinguish between three modalities --- car, bus, and train. We use gravity estimation to pre-process the samples. We extract features from statistical, frequency-based, and peak-based domain. With statistical analysis of the features we gain an introspective into the data. To additionally analyze the features we construct several feature sets for classification. As a classifier we use random forest, support vector machine, and neural network. Our approach correctly classifies 65% cars, 63% buses, and 18% trains using neural network.

Jezik:Angleški jezik
Ključne besede:machine learning, mobile sensing, data mining, pattern recognition, intelligent transportation systems
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2018
PID:20.500.12556/RUL-106015 Povezava se odpre v novem oknu
Datum objave v RUL:14.01.2019
Število ogledov:1819
Število prenosov:375
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Detekcija prevoznega sredstva z mobilnimi senzorji
Izvleček:
V delu obravnavamo detekcijo prevoznega sredstva z mobilnimi senzorji in metodami strojnega učenja. Pri tem uporabljamo kratke vzorce podatkov iz pospeškometra, ki jih zajamemo med uporabnikovim potovanjem v vozilu. Razločujemo med tremi prevoznimi sredstvi --- avtom, avtobusom in vlakom. Vzorce predobdelamo tako, da iz pospeškov izločimo gravitacijsko komponento. Iz vzorcev izločimo statistične in frekvenčne značilke ter značilke vrhov. S statistično analizo značilk dobimo vpogled v podatke. Dodatno analiziramo značilke preko različnih množic značilk, ki jih uporabljamo za klasifikacijo. Kot klasifikatorje uporabljamo naključne gozdove, metodo podpornih vektorjev in nevronske mreže. Z uporabo nevronskih mrež smo pravilno razpoznali 65% avtomobilov, 63% avtobusov in 18% vlakov.

Ključne besede:strojno učenje, mobilno zaznavanje, podatkovno rudarjenje, razpoznava vzorcev, inteligentni transportni sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj