izpis_h1_title_alt

Determination of relaxation modulus of time-dependent materials using neural networks
ID Aulova, Alexandra (Author), ID Govekar, Edvard (Author), ID Emri, Igor (Author)

.pdfPDF - Presentation file, Download (620,59 KB)
MD5: 8B56DC99FB8FF348B5EE3E43ED6DE5FE
URLURL - Source URL, Visit http://link.springer.com/article/10.1007%2Fs11043-016-9332-x This link opens in a new window

Abstract
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.

Language:English
Keywords:relaxation modulus, inverse problem, neural networks, multilayer perceptron, radial basis function neural network, structural health monitoring
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FS - Faculty of Mechanical Engineering
Publication version:Author Accepted Manuscript
Year:2017
Number of pages:Str. 331-349
Numbering:Vol. 21, iss. 3
PID:20.500.12556/RUL-105925 This link opens in a new window
UDC:681.5(045)
ISSN on article:1385-2000
DOI:10.1007/s11043-016-9332-x This link opens in a new window
COBISS.SI-ID:15013147 This link opens in a new window
Publication date in RUL:24.12.2018
Views:1687
Downloads:927
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Mechanics of time-dependent materials
Shortened title:Mech. time-depend. mater.
Publisher:Kluwer
ISSN:1385-2000
COBISS.SI-ID:3749403 This link opens in a new window

Secondary language

Language:Slovenian
Keywords:relaksacijski moduli, nevronske mreže, večplastni perceptron, monitoring stanja stuktur

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P2-0264, P2-0241
Name:Trajnostni polimerni materiali in tehnologije, Sinergetika kompleksnih sistemov in procesov

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back