Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Determination of relaxation modulus of time-dependent materials using neural networks
ID
Aulova, Alexandra
(
Avtor
),
ID
Govekar, Edvard
(
Avtor
),
ID
Emri, Igor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(620,59 KB)
MD5: 8B56DC99FB8FF348B5EE3E43ED6DE5FE
URL - Izvorni URL, za dostop obiščite
http://link.springer.com/article/10.1007%2Fs11043-016-9332-x
Galerija slik
Izvleček
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Jezik:
Angleški jezik
Ključne besede:
relaxation modulus
,
inverse problem
,
neural networks
,
multilayer perceptron
,
radial basis function neural network
,
structural health monitoring
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Različica publikacije:
Recenzirani rokopis
Leto izida:
2017
Št. strani:
Str. 331-349
Številčenje:
Vol. 21, iss. 3
PID:
20.500.12556/RUL-105925
UDK:
681.5(045)
ISSN pri članku:
1385-2000
DOI:
10.1007/s11043-016-9332-x
COBISS.SI-ID:
15013147
Datum objave v RUL:
24.12.2018
Število ogledov:
1694
Število prenosov:
928
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mechanics of time-dependent materials
Skrajšan naslov:
Mech. time-depend. mater.
Založnik:
Kluwer
ISSN:
1385-2000
COBISS.SI-ID:
3749403
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
relaksacijski moduli
,
nevronske mreže
,
večplastni perceptron
,
monitoring stanja stuktur
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0264, P2-0241
Naslov:
Trajnostni polimerni materiali in tehnologije, Sinergetika kompleksnih sistemov in procesov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj