Electronics is strongly correlated with the technology development and the society. Development has also occurred in the field of electronics itself. In addition to the wired electronics, programmable electronics are increasingly used today. Literature review shows that at the universities and secondary vocational schools the program has already begun to adapt to the development and has included the programmable electronics in the teaching programs. However, in elementary schools, the curricula related to the field of electronics have not been updated since 2005. Electronics are covered in elective courses that are not part of the mandatory curriculum and are rarely implemented in schools. We identified quite a few competitions in Slovenia that are related to the field of electronics, but are attended only by a few students. The inclusion of programmable electronics in the elementary schools could have a motivating effect on both pupils and teachers. The theoretical part of the thesis presents some of the basics of the Arduino platform, which is an open-source electronics platform based on the easy-to-use hardware and software. The Arduino platform is also suitable for pupils in elementary schools and is freely accessible. In teaching electronics, it is important that the teacher connects wired and programmable electronics sensibly. It is furthermore recommended to use inductive approaches such as the experiential learning model since electronics is a specific field that needs to be well understood. In the experiential learning, pupils are mainly learning from their own experience and are developing new knowledge. Experience has also had a great importance in the history of learning. The main purpose of the thesis is to encourage teachers to teach electronics and students to learn it. We have created two teaching study materials with didactic recommendations. Study material 1 is suitable for early learning and teaching of electronics in the range of 10 school hours, and Study material 2 in the range of 35 school hours. Both study materials were executed, the first on technical days in the elementary schools in Ljubljana and the second at the Summer School of Electronics and Robotics 2018. Both executions were based on the experiential learning model, but the role of the teacher in the implementation of the Study material 2 is noticeably smaller. Wiring and programmable electronics are intertwined in the execution of both study materials. We analyzed the results and found that the pupils were positively oriented to the field of electronics and that they enjoyed the execution of both study materials. In order to obtain the most detailed student opinion about the field of electronics and the execution of study materials at the summer school, we conducted a semi-structured interview with the students..
The research could encourage teachers to carry out electronics-related subjects and to use inductive approaches and learning models with experiential learning.
|