S porastom globokih arhitektur, ki temeljijo na nevronskih mrežah, so se v zadnjem času bistveno izboljšali rezultati pri reševanju problemov na več področjih. Zaradi popularnosti in uspešnosti teh globokih pristopov, temelječih na nevronskih mrežah, so bili drugi, predvsem kompozicionalni pristopi, odmaknjeni od središča pozornosti raziskav.
V pričujoči disertaciji se posvečamo vprašanju, ali je mogoče razviti globoko arhitekturo, ki bo presegla obstoječe probleme globokih arhitektur. S tem namenom se vračamo h kompozicionalnim modelom in predstavimo kompozicionalni hierarhični model kot alternativno globoko arhitekturo, ki bo imela naslednje značilnosti: transparentnost, ki omogoča enostavno razlago naučenih konceptov, nenadzorovano učenje in zmožnost učenja na majhnih podatkovnih bazah, uporabnost modela kot izluščevalca značilk, kot tudi zmožnost uporabe transparentnosti modela za odkrivanje vzorcev.
Naše delo temelji na kompozicionalnih modelih, ki so v glasbi intuitivni. Predlagani kompozicionalni hierarhični model je zmožen nenadzorovanega učenja večnivojske predstavitve glasbenega vhoda. Model omogoča pregled naučenih konceptov skozi transparentne strukture. Lahko ga uporabimo kot generator značilk -- izhod modela lahko uporabimo za klasifikacijo z drugimi pristopi strojnega učenja. Hkrati pa lahko transparentnost predlaganega modela uporabimo za analizo (raziskovanje naučene hierarhije) pri odkrivanju vzorcev, kar je težko izvedljivo z ostalimi pristopi, ki temeljijo na nevronskih mrežah.
Relativno kodiranje konceptov v samem modelu pripomore k precej manjšim modelom in posledično zmanjšuje potrebo po velikih podatkovnih zbirkah, potrebnih za učenje modela.
Z vpeljavo biološko navdahnjenih mehanizmov želimo model še bolj približati človeškemu načinu zaznave. Za nekatere mehanizme, na primer inhibicijo, vemo, da so v človeški percepciji prisotni na nižjih nivojih v ušesu in bistveno vplivajo na način zaznave.
V modelu uvedemo prve korake k takšnemu načinu procesiranja proti končnemu cilju izdelave modela, ki popolnoma odraža človeško percepcijo.
V prvem poglavju disertacije predstavimo motivacijo za razvoj novega modela. V drugem poglavju se posvetimo dosedanjim objavljenim dosežkom na tem področju. V nadaljnjih poglavjih se osredotočimo na sam model. Sprva opišemo teoretično zasnovo modela in način učenja ter delovanje biološko-navdahnjenih mehanizmov. V naslednjem koraku model apliciramo na več različnih glasbenih domen, ki so razdeljene glede na tip vhodnih podatkov. Pri tem sledimo časovnici razvoja in implementacijam modela tekom doktorskega študija. Najprej predstavimo aplikacijo modela za časovno-frekvenčne signale, na katerem model preizkusimo za dve opravili: avtomatsko ocenjevanje harmonij in avtomatsko transkripcijo osnovnih frekvenc. V petem poglavju predstavimo drug način aplikacije modela, tokrat na simbolne vhodne podatke, ki predstavljajo glasbeni zapis. Pri tem pristopu se osredotočamo na odkrivanje vzorcev, s čimer poudarimo zmožnost modela za reševanje tovrstnih problemov, ki je ostalim pristopom še nedosegljivo. Model prav tako evalviramo v vlogi generatorja značilk. Pri tem ga evalviramo na problemu melodične podobnosti pesmi in razvrščanja v variantne tipe. Nazadnje, v šestem poglavju, pokažemo zadnji dosežek razvoja modela, ki ga apliciramo na problem razumevanja ritma v glasbi. Prilagojeni model analiziramo in pokažemo njegovo zmožnost učenja različnih ritmičnih oblik in visoko stopnjo robustnosti pri izluščevanju visokonivojskih struktur v ritmu.
V zaključkih disertacije povzamemo vloženo delo in rezultate ter nakažemo nadaljnje korake za razvoj modela v prihodnosti.
|