izpis_h1_title_alt

Eksponenti topoloških prostorov : delo diplomskega seminarja
ID Reberc, Petra Ivana (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Lešnik, Davorin (Comentor)

.pdfPDF - Presentation file, Download (744,06 KB)
MD5: 78F462AA9B1147CDB15C667A9DFDAEC4

Abstract
Zanima nas, kdaj lahko na prostoru zveznih funkcij $C(X, Y)$ vpeljemo eksponentno topologijo. Ugotovimo, da je to odvisno predvsem od lastnosti prostora $X$ oziroma domene, in z obravnavanjem prostora Sierpińskega kot kodomeno poenostavimo problem. Raziskujemo topologije na družinah odprtih množic in se tako približujemo iskanemu pogoju. Ugotovimo, da mora biti $X$ sržno kompakten in podamo eksponentno topologijo za dani $X$.

Language:Slovenian
Keywords:eksponentna topologija, eskponenciabilnost, sržno kompaktni prostori, šibka topologija, krepka topologija, Scottova topologija, topologija Aleksandrova
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103478 This link opens in a new window
UDC:515.1
COBISS.SI-ID:18441305 This link opens in a new window
Publication date in RUL:19.09.2018
Views:1861
Downloads:282
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Exponentiable spaces and the exponential topology
Abstract:
We would like to know when is it possible to endow $C(X, Y)$ with an exponential topology. We observe this depends mainly on the properties of the domain $X$ and then we simplify the problem by considering the Sierpiński space as the codomain. We explore topologies on topologies and approach the desired criteria. We find out $X$ has to be core compact and find the adequate exponential topology.

Keywords:exponential topology, exponentiability, core-compact spaces, weak topology, strong topology, Scott topology, Alexandroff topology

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back