Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Avtomatsko prepoznavanje vedenjskih vzorcev : delo diplomskega seminarja
ID
Molan, Martin
(
Avtor
),
ID
Bauer, Andrej
(
Mentor
)
Več o mentorju...
,
ID
Žnidaršič, Martin
(
Komentor
)
PDF - Predstavitvena datoteka,
prenos
(3,88 MB)
MD5: 8B178AF9EB9BD08AA20CC88F9EB4B9AC
Galerija slik
Izvleček
Naloga obravnava izgradnjo napovednih modelov na osnovi realnih podatkov. Cilj opisanih postopkov je modeliranje in napovedovanje obnašanja igralcev v igralniški industriji. Osnova za izdelavo napovednega modela je priprava podatkov za algoritme strojnega učenja. Uspešnost obdelave realnih podatkov z nečistočami in napakami pomembno vpliva na možnost izgradnje smiselnega napovednega modela. Prvi cilj modeliranja vedenja je izgradnja modela, ki napoveduje, ali bo igralec naredil drugi depozit. Natančnost razvitega modela zadostuje potrebam domene in je primerna za implementacijo v praksi. Drugi cilj modeliranja je izgradnja širšega napovednega modela, ki opisuje razvoj posameznikovih igralnih navad. Predstavljena je smiselnost drugega pristopa in njegova skladnost z zahtevami domene. Preizkus napovedne moči širšega napovednega modela presega okvire te naloge saj je dolgotrajna in zahteva veliko specifičnega domenskega znanja.
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
nadzorovano učenje
,
nenadzorovano učenje
,
napovedno modeliranje
,
modeliranje vedenja
,
igralniška industrija
,
umetna inteligenca
,
odločitveno drevo
,
naključni gozd
,
segmentacija
Vrsta gradiva:
Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:
2.11 - Diplomsko delo
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2018
PID:
20.500.12556/RUL-103237
UDK:
004.8
COBISS.SI-ID:
18435161
Datum objave v RUL:
15.09.2018
Število ogledov:
2523
Število prenosov:
315
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MOLAN, Martin, 2018,
Avtomatsko prepoznavanje vedenjskih vzorcev : delo diplomskega seminarja
[na spletu]. Diplomsko delo. [Dostopano 1 april 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=103237
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Automatic recognition of behavioral patterns
Izvleček:
This thesis explores development of predictive models on real life datasets. The goal of approaches, described in this thesis, is modeling and prediction of players' behavior in casino industry. The basis for creation of predictive model is preparation of real life datasets for machine learning algorithms. Sensible curation of real life datasets that include missing values, inaccuracies and other noise determines the possibility for development of accurate predictive models. First goal of predictive behavioral modeling is creation of automated prediction model that predicts if the player will make a second deposit. Accuracy of developed model is sufficient for implementation in real life casino operation. Second goal is to develop broader predictive model that describes and predicts development of player’s behavior. Sensibility of proposed approach and its compliance with domain demands is presented. Real predictive strength of proposed model is out of scope of this work as it requires a lot of additional domain knowledge.
Ključne besede:
machine learning
,
supervised learning
,
unsupervised learning
,
predictive modeling
,
behavioral modeling
,
casino industry
,
artificial intelligence
,
decision tree
,
random forest
,
clustering
Podobna dela
Podobna dela v RUL:
Proceedings
Gorski gozd
Gozdni prostor
Forests and extreme weather events
Razvoj koncepta večnamenskega gospodarjenja z gozdovi
Podobna dela v drugih slovenskih zbirkah:
Znanost za prihodnost
Gozd in les
Klimatske spremembe in gozd
Forests and forestry in Slovenia
Pametna specializacija v gozdarstvu, lesarstvu in papirništvu
Nazaj