Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Učenje konvolucijskih nevronskih mrež iz sintetičnih podatkov na primeru detekcije rok
ID
Aljaž, Barbara
(
Avtor
),
ID
Čehovin Zajc, Luka
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(3,04 MB)
MD5: DB8D4BA3DF6BCD45FE77340897FEB7E0
Galerija slik
Izvleček
Za učenje konvolucijskih nevronskih mrež je potrebna velika količina podatkov, ki jih je potrebno pridobiti in anotirati. Pogosto se za povečanje učnih zbirk uporabljajo različne augmentacije, mi pa smo v tem diplomskem delu raziskali možnost uporabe umetno generiranih podatkov. Ustvarili smo jih na podlagi tridimenzionalnega modela in parametre, ki so vplivali na zajete slike, nadzorovali avtomatsko. Delovali smo na primeru zaznave človeških rok in detektor preizkusili na dveh zbirkah realnih slik v okviru scenarija brezdotične interakcije med človekom in računalnikom. Primerjali smo ga z detektorjem, naučenim iz realističnih podatkov in analizirali razlike. Rezultati predstavljenega eksperimenta so obetavni in nakazujejo več možnosti za nadaljnji razvoj take vrste učenja.
Jezik:
Slovenski jezik
Ključne besede:
računalniški vid
,
konvolucijske nevronske mreže
,
YOLO
,
umetno generirani podatki
Vrsta gradiva:
Diplomsko delo/naloga
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2018
PID:
20.500.12556/RUL-102683
Datum objave v RUL:
06.09.2018
Število ogledov:
1380
Število prenosov:
325
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Using synthetic data to train convolutional neural networks for the case of hand detection
Izvleček:
Convolutional neural networks require a large amount of data for training that need to be collected and annotated. Methods used to enlarge learning dataset usually include different augmentations, but in this thesis we researched the possibility of using artificially generated data samples. We created them using a three dimensional model and automatically controlled parameters that influenced captured images. We worked on the example of human hand detection and evaluated our detector on two datasets of real images for a touch-less interface human-computer interaction scenario. We compared it with a detector trained on real life data and analyzed the differences. Results of the experiment are promising and present many opportunities for further development of such training technique.
Ključne besede:
computer vision
,
convolutional neural networks
,
YOLO
,
synthetic data
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj