izpis_h1_title_alt

Gauss-Wantzelov izrek : magistrsko delo
ID Grahelj, Luka (Avtor), ID Vavpetič, Aleš (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,14 MB)
MD5: D10AEA995CA4DD39CA754BCC980F9F90

Izvleček
V magistrskem delu predstavimo Gauss-Wantzelov izrek, ki nam pove, za katera naravna števila $n$ je pravilne $n$-kotnike mogoče konstruirati zgolj z rabo ravnila in šestila. Izrek to lastnost števil najprej analizira na njihovih praštevilskih (oznaka $p$) gradnikih, za katere ugotavlja, da so pravilni $p$-kotniki konstruktibilni natanko tedaj, ko so praštevila $p$ Fermatova (oznaka $p_F$). Pri tem je vsak izmed avtorjev izreka prispeval dokaz ene smeri te ekvivalence: Gauss je najprej našel algoritem, s katerim lahko za poljubno Fermatovo praštevilo $p_F$ naposled vedno skonstruiramo ustrezni $p_F$-kotnik, Wantzel pa je dokazal, da niti teoretično ne bi bilo mogoče skonstruirati drugačnih $p$-kotnikov kot prav tistih, za katere je to storil že Gauss. Središčne kote med seboj različnih $p_{F_i}$-kotnikov lahko z ustreznimi celoštevilskimi kombinacijami seštejemo v središčni kot $\prod_i p_{F_i}$-kotnika, ob tem pa ga lahko z zaporednimi bisekcijami še poljubnokrat razpolovimo, v čemer imamo tako tudi algoritem, kako konstruirati pravilne večkotnike za sestavljena števila $s$ v obliki $s=2^kp_{F_1}p_{F_2}\ldots p_{F_t}$. Kot pri konstruiranju posameznih $p$-kotnikov se tudi pri njihovem sestavljanju v $s$-kotnike izkaže, da se zadostni pogoj za uporabo tega algoritma samega že pokriva s potrebnim, zato so le-ti konstruktibilni za natanko opisane oblike števil $s$.

Jezik:Slovenski jezik
Ključne besede:konstrukcije z ravnilom in šestilom, pravilni večkotniki, koreni enote, ciklotomični polinomi, Gaussove periode, Wantzelov sistem, Fermatova praštevila
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2018
PID:20.500.12556/RUL-101206 Povezava se odpre v novem oknu
COBISS.SI-ID:18365017 Povezava se odpre v novem oknu
Datum objave v RUL:13.05.2018
Število ogledov:1920
Število prenosov:503
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:The Gauss-Wantzel Theorem
Izvleček:
The subject of this paper is the Gauss-Wantzel Theorem that states which regular $n$-gons can be constructed using only straightedge and compass. Said property of natural numbers $n$ is first analyzed among their basic building blocks in the form of primes (denoted by $p$), for which the theorem determines that regular $p$-gon is constructible if and only if $p$ is a Fermat prime (denoted by $p_F$). In that regard, each of the authors provided the proof of one of the directions of the proposed equivalence: Gauss first developed an algorithm that allows us to eventually construct a regular $p_F$-gon for any Fermat prime $p_F$, whereas Wantzel proved that no regular $n$-gons others than the ones already suggested by Gauss could ever be constructed. Using appropriate integer combinations, central angles of different $p_{F_i}$-gons can be added into central angle of a $\prod_i p_{F_i}$-gon, which can further be repeatedly divided into two by consecutive angle bisections. Hence we have an algorithm on how to construct a regular $c$-gon for composite numbers $c$ in the form $c=2^kp_{F_1}p_{F_2}\ldots p_{F_t}$. As with the construction of single $p$-gons, it turns out that the sufficient condition for the application of this particular algorithm for their composition already aligns with the necessary one, therefore making the aforementioned $c$-gons precisely the ones being constructible.

Ključne besede:compass-and-straightedge constructions, regular polygons, roots of unity, cyclotomic polynomials, Gaussian periods, Wantzel system, Fermat primes

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj