Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Vodenje robotske roke z metodo podpornih vektorjev in odprto kodnim elektromiografom : magistrsko delo
ID
Cevzar, Mišel
(
Author
),
ID
Babič, Jan
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/4865/
Image galllery
Abstract
Trg elektrotehničnih izdelkov je velik in raznolik. Ponuja tudi majhne računalnike v velikosti bančne kartice (zgled: Raspberry Pi) ali mikrokrmilnike (zgled: Arduino), ki so cenovno dostopni, odprto kodni in preprosti za uporabo. Hkrati je na voljo malo cenovno dostopnih in odprtokodnih naprav, ki bi bile uporabne za klasificiranje in analizo človeških signalov, kakršen je elektromiograf (EMG). Želeli smo preizkusiti napravo, ki bi lahko zapolnila zgoraj omenjeno vrzel. Preizkusili smo petkanalni EMG ščit za Arduino na treh zdravih moških, starosti 15, 22 in 27 let (starost = 21 ± 6(SD) let). Njihova naloga je bila, da izvajajo preproste gibe s prsti, na podlagi katerih smo naučili EMG klasifikator gibov prstov. Klasifikacija gibov je bila osnovana na metodi podpornih vektorjev. Klasifikator je skupaj z EMG Arduinom dosegel povprečno točnost 78 % pri prepoznavanju ustreznih gibov prstov in posledično aktiviral ustrezni prst robotske roke. Naši rezultati potrjujejo, da lahko z naučenim klasifikatorjem gibov, ki temelji na metodi podpornih vektorjev, vodimo robotsko roko v realnem času z uporabo Arduina. To nam je uspelo z uporabo cenovno dostopne in prilagodljive naprave, ki ima potencial kot izobraževalni pripomoček na področju analize in uporabe človeških signalov.
Language:
Slovenian
Keywords:
elektromiograf (EMG)
,
metoda podpornih vektorjev
,
odprta koda
,
robotska roka
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
PEF - Faculty of Education
Publisher:
[M. Cevzar]
Year:
2017
Number of pages:
IX, 35 str.
PID:
20.500.12556/RUL-98168
UDC:
007.52(043.2)
COBISS.SI-ID:
11822665
Publication date in RUL:
13.12.2017
Views:
2473
Downloads:
414
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
CEVZAR, Mišel, 2017,
Vodenje robotske roke z metodo podpornih vektorjev in odprto kodnim elektromiografom : magistrsko delo
[online]. Master’s thesis. M. Cevzar. [Accessed 24 March 2025]. Retrieved from: http://pefprints.pef.uni-lj.si/4865/
Copy citation
Share:
Secondary language
Language:
English
Title:
Robotic hand control using support vector machine and open source electromyograph
Abstract:
Off-the-shelf electronic market is large and diverse. It includes credit card size computers (example: Raspberry Pi) or microcontroller boards (example: Arduino) that are relatively low cost, open source and easy to use. Nevertheless, there is a lack of off-the-shelf, open source devices that would enable us to learn about and make use of physiological signal processing. An example of such a device is an electromyograph (EMG). In this thesis, we investigated if an EMG device could fulfil the afore mentioned gap. EMG device was a five channel open source Arduino EMG shield. The performance of the device was evaluated on three healthy male subjects aged 15, 22, 27 (age = 21 ± 6(SD) years). They were instructed to perform simple finger movements, which we classified and replicated on the robotic hand. The EMG signal classification was performed using a support vector machine (SVM) algorithm. In our experimental setup, the average EMG signal classification accuracy was 78 %. Our results confirm, that by using a trained movement classifier based on the support vector machine algorithm we can control a robotic hand in real time by utilising the EMG signal acquired by an Arduino EMG shield. We achieved our results by using a cost effective and customisable device holding the potential to provide access to easier human-machine interface prototyping and learning about neurophysiology.
Keywords:
robotics
,
robotika
Similar documents
Similar works from RUL:
Strojno učenje
Napovedovanje gibanja cen delnic z metodo podpornih vektorjev
Tehnike kombiniranja napovedi pri strojnem učenju ansamblov
Analiza tveganj pri spletnih posojilih
Zgodnje odkrivanje prevar pri menjavi kriptovalut s strojnim učenjem
Similar works from other Slovenian collections:
Predikcija športnih rezultatov z uporabo strojnega učenja
Strojno učenje
Identifikacija slabe kode s strojnim učenjem
Klasifikacija dogodkov v časovnih vrstah s strojnim učenjem
Samodejna klasifikacija glasbenih žanrov zvočnih posnetkov
Back