izpis_h1_title_alt

Šestosni serijski manipulator za izvajanje meritev v industrijskem okolju
ID Prevc, Jošt (Author), ID Mihelj, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (23,37 MB)
MD5: DF1C83AF22E070A338461F8742E90327
PID: 20.500.12556/rul/0a8f7782-cb87-402a-a3d3-93546a9737e5

Abstract
V merilni tehniki se z večjim številom merilnih inštrumentov ter parametrov pojavlja vedno večja potreba po avtomatizaciji merilnih postopkov. Na ta način je določen eksperiment lahko opravljen hitreje in z manjšo potrebo po poseganju operaterja v eksperiment. V pričujočem delu je predstavljena priprava manipulatorja s šestimi stopnjami prostosti za preizkušanje delovanja magnetnih enkoderjev v odvisnosti od različnih izmaknjenosti merilnih glav od magneta. Na podlagi zahtev za merjenje parametrov magnetnih enkoderjev je bil izbran šestosni manipulator podjetja \emph{Standa Ltd.}, ki je sestavljen iz triosnega premičnega sistema za nastavljanje pozicije, na katerega je nato pričvrščen še triosni sistem za nastavljanje orientacije. Koračni motorji v oseh so vodeni preko krmilnikov, ki z računalniškega programskega vmesnika prejemajo ukaze. Modularnost manipulatorjevih osi omogoča, da ga lahko sestavimo v več različnih konfiguracij. Iz tega razloga kinematični model ni vnaprej določen, temveč ga moramo izpeljati za izbrano konfiguracijo. Pri tem se soočimo s problemom direktne kinematike, ki obravnava izračun zunanjih koordinat iz znanih vrednosti notranjih spremenljivk. Prav tako pridemo tudi do obratnega problema, ki ga imenujemo inverzna kinematika. Ta obravnava izračun notranjih koordinat iz znanih vrednosti zunanjih koordinat. V postopku meritve manipulatorju pogosto podamo ciljno točko, ki mora biti dosežena z vrhom mehanizma. Iz te točke je potrebno izračunati premike posamezne osi. Ker so izračunani premiki lahko različnih dolžin, bodo nekatere osi svojo pot opravile prej kot druge, kar pa je za uporabnika lahko moteče. Iz tega razloga lahko pred premikom izvedemo sinhronizacijo premikov, kjer izračunamo parametre hitrostnega trapeznega profila za vsako os na tak način, da bodo ciljno točko dosegle istočasno. Za podajanje merilnih rezultatov ob uporabi opisanega manipulatorja je pomembno, da vemo, s kakšno ponovljivostjo se je manipulator sposoben premikati iz točke v točko. Iz tega razloga izvedemo standardiziran merilni postopek, s katerim verificiramo zahtevano ponovljivost manipulatorja. Za čim lažjo interakcijo uporabnika z manipulatorjem je potrebno ustvariti preprost in hkrati ustrezno zmogljiv in robusten uporabniški vmesnik. Iz tega razloga se uporabniški vmesnik razdeli na več nivojev. Nižji nivoji so zadolženi za komunikacijo ter izvajanje kompleksnejših matematičnih in logičnih operacij, na višje nivoje pa izvozimo le tiste funkcije in informacije, za katere želimo, da ima končni uporabnik nad njimi nadzor. Za konec je predstavljen še primer dejanske merilne aplikacije, kjer manipulator uporabimo za merjenje učinkovitosti ob različnih mehanskih izmikih. V programu po korakih spreminjamo pozicijo čitalne glave nad magnetom ter v vsaki točki zajamemo želene podatke z enkoderja. Zbrani podatki nam omogočijo verifikacijo mehanskih toleranc enkoderja ter nam hkrati pomagajo poiskati pozicijo optimalnega delovanja.

Language:Slovenian
Keywords:avtomatizacija meritev, serijski manipulator, šestosni mehanizem
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2017
PID:20.500.12556/RUL-97989 This link opens in a new window
Publication date in RUL:15.11.2017
Views:886
Downloads:367
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Six-axis serial manipulator for measurements in industrial environment
Abstract:
In the field of measuring techniques we are experiencing increasing demand for automation of measuring procedures due to the increasing number of measuring instruments and parameters. With automation, the required experiment can be done faster and without the need for the engineer to manually interfere with the measuring process. In the presented document, the preparation and use of six axis manipulator is introduced. The used mechanism is required in order to test various mechanical tolerances of different magnetic encoders, where the operating position of encoder read head in relation with its magnet needs to be verified. With known requirements for such manipulator, the chosen mechanism was provided by \emph{Standa Ltd.} manufacturer. The mechanism consists of three axis translational system, which is responsible for setting the required position, and three axis rotational motorized system, which is needed for setting the required orientation of the end-effector. The stepper motors in each of the moving axis are controlled by four controllers, which are receiving the commands from the user software. The modularity of the manipulator enables its assembly to many different configurations. Because of this, the kinematic model of the manipulator is not determined beforehand but is left to us to derive according to used configuration. During this process we are faced with the problem of direct kinematics, which examines the computation of external coordinates with known internal coordinate values. We also come across the reversed problem, known as the problem of inverse kinematics, where the values of external coordinates are known, and we need to compute the required values of internal coordinates. When using the manipulator, we usually send command to move the end effector to the specified target pose. From this command we need to compute the required path for each axis. Since the computed distances for each axis vary, some of the stages reach target position in shorter time than others. This behaviour can be disturbing for the user. Synchronisation of movements is introduced to remove this effect. In this procedure, we compute the parameters of trapezoidal movement profile of each axis in such a way, that all of the axis will reach the target position at the same time. For representation of the measurement results, it is very important to determine the positional repeatability of the used mechanism. For measurement of this parameter, a standardised procedure is presented which is used to verify the required repeatability of the manipulator. In order to provide the user with an effective way of interacting with the machine, an easy and robust user interface must be provided. We divide the program architecture to multiple layers, where all the lower layers are responsible for setting of the communication and also for the performance of complex mathematical and logical computations. Higher layers only have visibility of the functions and parameters, which are needed to be controlled by the user. Finally, a real world measuring scenario is introduced, where manipulator is used to verify the operation of encoder with respect to various read head positions around the magnet. In the proposed program, we incrementally change the end effector position and read encoder data at each position. The acquired data enables us to verify the encoder's mechanical tolerances and also enables us to find the optimal operating position.

Keywords:measuring automation, serial manipulator, six-axis mechanism

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back