izpis_h1_title_alt

METODE IZBOLJŠANJA NATANČNOSTI IN ZANESLJIVOSTI LOKALIZACIJE V ZAPRTIH PROSTORIH
ID MEDVEŠEK, JAN (Author), ID HAILES, STEVE (Mentor) More about this mentor... This link opens in a new window, ID Trost, Andrej (Comentor)

.pdfPDF - Presentation file, Download (22,93 MB)
MD5: 90171FF34CB9D0C0B73954312E3753FC
PID: 20.500.12556/rul/5c31f493-fd5c-49cc-aa59-76d6e00b7a6a

Abstract
V zadnjem desetletju so raziskovalne dejavnosti na področju lokalizacije v odprtih prostorih prispevale k velikemu napredku. Trenutno je mogoče z uporabo sprejemnikov GPS položaj pešcev določiti do decimetra natančno. Po drugi strani pa lokalizacija v zaprtih prostorih še zdaleč ne dosega podobne natančnosti. Te omejitve so nas vodile do raziskav na področju izboljšave natančnost in zanesljivosti sistemov za lokalizacijo v zaprtih prostorih. Glavni doprinos te doktorske disertacije je nova metoda, ki temelji na problemu optimizacije grafa in se rešuje z iteracijsko metodo nelinearnih najmanjših kvadratov (ang. Non-Linear Least Squares, NLLS). Pomembna izboljšava je bila predvsem v bolj optimalni predstavitvi senzorskih modelov, ki predhodno izračunajo vrednosti in jih shranijo v tabele. Z uporabo te izboljšave smo zmanjšali zahtevnost procesov med njihovim izvajanjem, kar nam je omogočilo vključitev senzorskih modelov neposredno v razreševalnik. Za izgradnjo senzorskih modelov iz učne množice smo uporabili metodo Gaussovega procesa (GP). Učenje senzorskih modelov GP zahteva dobro oceno dejanskih vrednosti pri zajetih meritvah. Ta pristop zahteva vzporedno uporabo lokalizacijskih sistemov, katerih natančnost je večja kot pri sistemu, ki se uči. Takšni sistemi so običajno dražji ali pa izjemno zahtevni za postavitev. Drugi doprinos te disertacije je zatorej rešitev, ki uporablja obstoječe senzorje v kombinaciji z referenčnimi točkami, s čimer se omeji lezenje senzorskega signala. Razširjeni NLLS razreševalec je uporabljen za sočasno korekcijo peščeve trajektorije, ocenjevanje trenutnega lezenja senzorskega signala ter za dopuščanje majhnih odstopanj v absolutnih lokacijah referenčnih točk. Poleg predlaganih metod in algoritmov, smo razvili celoten sistem za lokalizacijo v zaprtih prostorih in ga preizkusili v različnih okoljih, kar nam je omogočilo zajem resničnih podatkov, ki se uporabljajo v nadaljnjih analizah in kot učna množica namenjena strojnemu učenju modelov.

Language:Slovenian
Keywords:Lokalizacija v zaprtih prosotih, NLLS, Gaussov proces, Korekcija lezenja, Strojno učenje
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2017
PID:20.500.12556/RUL-97648 This link opens in a new window
COBISS.SI-ID:11681876 This link opens in a new window
Publication date in RUL:03.11.2017
Views:2782
Downloads:302
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:METHODS FOR IMPROVING THE ACCURACY AND RELIABILITY OF INDOOR LOCALIZATION
Abstract:
In the last decade, research activities on outdoor tracking technology have seen an explosion of advances. It is currently possible to localise pedestrians outdoors to decimetre precision using mass-market raw global satellite navigation system receivers; however, localising pedestrians indoors to a similar accuracy is not yet possible. These limitations led us to start an investigation on how the indoor localisation systems can be improved. The main contribution of this thesis is a novel method based on the pose graph optimisation problem. The method uses the iterative Non-Linear Least Squares (NLLS) solver to solve the localisation problem and integrates a better usage of sensor models, which are pre-compute values instead of time-consuming on-going estimations. This process decreases run-time complexity and allows the integration of sensor models directly into the localisation solver. To build sensor models from a training set, the machine learning method Gaussian Process was used. As this requires good ground truth estimates, the common approach is to use an additional localisation system that provides more accurate observations as ground truth. These systems are either more expensive or difficult to set up. Therefore, the second major contribution of this thesis is a proposed method that use existing sensors in combination with known landmarks to compensate for long-term sensor drift. The extended NLLS solver is simultaneously used to correct the pedestrian trajectory, to estimate on-going sensor drift and to allow for slight deviations in the landmark's absolute location. In addition to proposed methods and algorithms, the entire indoor localisation system was built and deployed in different environments, which allowed us to collect hours of real-world data used in further analyses and to built machine learning models.

Keywords:Indoor localisation, NLLS, Gaussian Process, Drift correction, Machine Learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back