Details

Vetrne elektrarne : diplomsko delo
ID Parovel, Sara (Author), ID Mohorič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,42 MB)
MD5: 2D2BF25A1ABA39F4142BEC726D5D8D31
PID: 20.500.12556/rul/f3263642-3532-4919-ae08-966a352d73e4

Language:Slovenian
Keywords:obnovljivi viri energije, vetrna energija, vetrne turbine, Weibullova porazdelitev
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[S. Parovel]
Year:2016
Number of pages:VI, 40 str.
PID:20.500.12556/RUL-97504 This link opens in a new window
UDC:551.556.3:621.311.245
COBISS.SI-ID:3008868 This link opens in a new window
Publication date in RUL:26.10.2017
Views:19282
Downloads:1174
Metadata:XML DC-XML DC-RDF
:
PAROVEL, Sara, 2016, Vetrne elektrarne : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : S. Parovel. [Accessed 28 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=97504
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:renewable energy sources, wind energy, wind turbines, Weibull distribution

Similar documents

Similar works from RUL:
  1. Long-term object tracking using region proposals
  2. Segmentacija rok za obogateno resničnost
  3. Improving quality of scanned visual content using convolutional neural networks
  4. Recovery of superquadric parameters from depth images using deep learning
  5. Discriminative correlation filter with segmentation and context for robust tracking
Similar works from other Slovenian collections:
  1. Recognition of tree features from photography using convolutional neural networks

Back