Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Vetrne elektrarne : diplomsko delo
ID
Parovel, Sara
(
Author
),
ID
Mohorič, Aleš
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,42 MB)
MD5: 2D2BF25A1ABA39F4142BEC726D5D8D31
PID:
20.500.12556/rul/f3263642-3532-4919-ae08-966a352d73e4
Image galllery
Language:
Slovenian
Keywords:
obnovljivi viri energije
,
vetrna energija
,
vetrne turbine
,
Weibullova porazdelitev
Work type:
Undergraduate thesis
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Place of publishing:
Ljubljana
Publisher:
[S. Parovel]
Year:
2016
Number of pages:
VI, 40 str.
PID:
20.500.12556/RUL-97504
UDC:
551.556.3:621.311.245
COBISS.SI-ID:
3008868
Publication date in RUL:
26.10.2017
Views:
19282
Downloads:
1174
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PAROVEL, Sara, 2016,
Vetrne elektrarne : diplomsko delo
[online]. Bachelor’s thesis. Ljubljana : S. Parovel. [Accessed 28 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=97504
Copy citation
Share:
Secondary language
Language:
English
Keywords:
renewable energy sources
,
wind energy
,
wind turbines
,
Weibull distribution
Similar documents
Similar works from RUL:
Long-term object tracking using region proposals
Segmentacija rok za obogateno resničnost
Improving quality of scanned visual content using convolutional neural networks
Recovery of superquadric parameters from depth images using deep learning
Discriminative correlation filter with segmentation and context for robust tracking
Similar works from other Slovenian collections:
Recognition of tree features from photography using convolutional neural networks
Back