Details

Analiza podatkov pacientov z Alzheimerjevo boleznijo z metodami strojnega učenja
ID MURGIĆ, IGOR (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,93 MB)
MD5: 21AC75E8830F6267224FD52C8FE11DBF
PID: 20.500.12556/rul/58466a7e-e26b-4211-9dca-2c19e979894e

Abstract
Cilj diplomske naloge je analiza podatkov bolnikov z Alzheimerjevo boleznijo in uporaba napovednih modelov, zgrajenih z metodami strojnega učenja. Zbrane podatke smo analizirali in poiskali zakonitosti med atributi. Atribute podatkov smo predstavili v obliki neusmerjenega grafa. Z uporabo zgrajenih modelov smo med atributi poiskali najpomembnejše in zavrgli tiste, ki so povzročali prekomerno prileganje. Tako dobljene modele smo testirali s pomočjo prečnega preverjanja in dobili rezultate točnosti modela. Zgrajeni modeli in primerjave med njimi so pokazale izstopanja nekaterih atributov, ki bi nam z manj preiskavami omogočili enostavnejšo in hitrejšo postavitev diagnoze same bolezni. Izločanje preiskav za zdravnike ni smiselno, saj jim povedo marsikaj o stanju bolnika. Lahko pa bi prilagodili vrstni red preiskav in s tem hitreje postavili diagnozo.

Language:Slovenian
Keywords:strojno učenje, Alzheimerjeva bolezen, analiza podatkov, gručenje, klasifikacija, prečno preverjanje, odločitvena drevesa, neusmerjeni grafi
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-97351 This link opens in a new window
Publication date in RUL:24.10.2017
Views:2213
Downloads:378
Metadata:XML DC-XML DC-RDF
:
MURGIĆ, IGOR, 2017, Analiza podatkov pacientov z Alzheimerjevo boleznijo z metodami strojnega učenja [online]. Bachelor’s thesis. [Accessed 24 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=97351
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analyzing Alzheimer's patients' data with machine learning methods
Abstract:
The aim of the diploma thesis is to analyze the data concerning patients with Alzheimer’s disease and to use the predictive models constructed through machine learning methods. The collected data was analyzed and the laws between attributes were defined. The data attributes were presented in the form of an undirected graph. The most relevant attributes were determined using the constructed models, the attributes that caused overfitting were eliminated. The models thus obtained were tested through cross-validation and the accuracy of each model was calculated. The constructed models and the comparisons between them showed that certain attributes were more distinctive than others. These attributes would enable us to simplify and expedite the establishment of the diagnosis of the disease, conducting fewer tests. Doctors deem the elimination of certain tests unreasonable, though, since a lot of information on the patient’s condition can be deduced from them. We could, however, modify the sequence of the tests, which would lead to more rapid establishment of the diagnosis.

Keywords:machine learning, Alzheimer's disease, data analysis, clustering, classfication, cross-validation, decision trees, undirected graphs

Similar documents

Similar works from RUL:
  1. Transcriptional regulation design based on the effect of multiple DNA-binding proteins
  2. Use of artificial transcription regulators for transcriptional regulation in mammalian cells
  3. Influence of selected transcription factors from the SOX family and c-MYB in regulation of RANKL gene expression in bone cells in osteoporosis
  4. Immunophenotyping of chronic rhinosinusitis with and without nasal polyps
  5. Use of CRISPR/dCas9 systems for regulation of TLR10 gene expression in lung epithelial cell line A549
Similar works from other Slovenian collections:
  1. Signaling pathway of the nuclear transcription factor kappa B
  2. Real-world experience with capmatinib in MET exon 14-mutated non-small cell lung cancer (RECAP)
  3. Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps
  4. Selpercatinib in RET fusion-positive non-small-cell lung cancer (SIREN)
  5. Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps

Back