izpis_h1_title_alt

Algoritmično podprta optimizacija pospeševanja prodaje
ID Janko, Nikolaj (Author), ID Mihelič, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (584,54 KB)
MD5: A85333D5C7F309DB2899EB1B397CA09B
PID: 20.500.12556/rul/5a62e75f-e7eb-40a1-92ea-7ce2aaadb031

Abstract
Spletna prodaja iz leta v leto strmo narašča, kar predstavlja dodaten izziv za prodajalce na spletnih prodajnih mestih, kot je Amazon, saj je konkurenčnih prodajalcev vedno več. Zaradi tega želi prodajalec ustvariti trdno vez med njim in kupcem, kar zahteva previdnost pri izbiri kupcev za promocijske aktivnosti, ki pa so za uspešno prodajo neizogibne. V magistrskem delu smo omenjeni problem definirali z modelom napovedovanja in zanj razvili več pristopov, ki temeljijo na teoriji grafov in množic. Zanje smo v sklopu ovrednotenja rezultatov testiranja na resničnih podatkih prodaje iz spletnega prodajnega mesta podjetja Amazon pokazali, da so v primerih napovedovanja kupcev boljša od regresijskih metod, ki so sicer ene od najpogosteje uporabljenih metod v napovedni analitiki.

Language:Slovenian
Keywords:optimizacija promocij prodaje, amazon, algoritmi prodaje, napovedna analitika
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-97071 This link opens in a new window
Publication date in RUL:18.10.2017
Views:1135
Downloads:509
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algorithmic optimization of sales acceleration
Abstract:
Online sales are growing rapidly over the years, which poses an additional challenge for online sellers such as Amazon, as there is ever more competition. The seller therefore wants to create a strong bond between him and the buyer. This requires caution in choosing buyers for promotional activities which are inevitable for successful sales. In the thesis we defined the problem with prediction model and developed several approaches based on graph theory and set theory to solve the problem. As part of the evaluation of test results on real sales data from Amazon online shopping site, we have shown that in case of customer prediction, the approaches we had developed are better than regression methods, the most commonly used methods in predictive analytics.

Keywords:sales promotion optimization, amazon, sales algorithm, predictive analytics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back